7 research outputs found

    Tree models for difference and change detection in a complex environment

    Full text link
    A new family of tree models is proposed, which we call "differential trees." A differential tree model is constructed from multiple data sets and aims to detect distributional differences between them. The new methodology differs from the existing difference and change detection techniques in its nonparametric nature, model construction from multiple data sets, and applicability to high-dimensional data. Through a detailed study of an arson case in New Zealand, where an individual is known to have been laying vegetation fires within a certain time period, we illustrate how these models can help detect changes in the frequencies of event occurrences and uncover unusual clusters of events in a complex environment.Comment: Published in at http://dx.doi.org/10.1214/12-AOAS548 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Novel track morphotypes from new tracksites indicate increased Middle Jurassic dinosaur diversity on the Isle of Skye, Scotland

    Get PDF
    Dinosaur fossils from the Middle Jurassic are rare globally, but the Isle of Skye (Scotland, UK) preserves a varied dinosaur record of abundant trace fossils and rare body fossils from this time. Here we describe two new tracksites from Rubha nam Brathairean (Brothers’ Point) near where the first dinosaur footprint in Scotland was found in the 1980s. These sites were formed in subaerially exposed mudstones of the Lealt Shale Formation of the Great Estuarine Group and record a dynamic, subtropical, coastal margin. These tracksites preserve a wide variety of dinosaur track types, including a novel morphotype for Skye: Deltapodus which has a probable stegosaur trackmaker. Additionally, a wide variety of tridactyl tracks shows evidence of multiple theropods of different sizes and possibly hints at the presence of large-bodied ornithopods. Overall, the new tracksites show the dinosaur fauna of Skye is more diverse than previously recognized and give insight into the early evolution of major dinosaur groups whose Middle Jurassic body fossil records are currently sparse

    Ichthyosaurs from the Jurassic of Skye, Scotland

    Get PDF
    Fossils of Mesozoic vertebrates are rare in Scotland, particularly specimens of marine reptiles such as plesiosaurs and ichthyosaurs. We describe a suite of ichthyosaur fossils from the Early to Middle Jurassic of Skye, which to our knowledge are the first ichthyosaurs from Scotland to be described and figured in detail. These fossils span approximately 30 million years, from the Sinemurian to the Bathonian, and indicate that ichthyosaurs were a major component of Scottish marine faunas during this time. The specimens include isolated teeth that could represent the most northerly known occurrences of the widespread Sinemurian species Ichthyosaurus communis, a characteristic component of the famous Lyme Regis faunas of England, suggesting that such faunas were also present in Scotland during the Early Jurassic. An associated humerus and vertebrae from Toarcian–Bajocian-aged deposits are named as a new genus and species of basal neoichthyosaurian, Dearcmhara shawcrossi. The taxonomic affinities of this taxon, which comes from a critical but poorly sampled interval in the fossil record, suggest that non-ophthalmosaurid neoichthyosaurians dominated European assemblages around the Early–Middle Jurassic boundary, and were later replaced by ophthalmosaurids, whose radiation likely took place outside Europe. Many of these specimens were collected by amateurs and donated to museum collections, a co-operative relationship essential to the preservation of Scotland’s fossil heritage

    A skeleton from the Middle Jurassic of Scotland illuminates an earlier origin of large pterosaurs

    No full text
    We thank the National Geographic Society (GEFNE185-16 to PI S.L.B.) for funding the fieldtrip on which the new pterosaur was found, a Philip Leverhulme Prize (to S.L.B.) for funding Edinburgh’s palaeontology laboratory, NERC for N.J.’s E4DTP studentship (NE/S007407/1), and the Royal Society (NIF\R1\191527 to G.F.F.) for funding the paleohistology workspace.Pterosaurs were the first vertebrates to evolve flight1,2 and include the largest flying animals in Earth history.3,4 While some of the last-surviving species were the size of airplanes, pterosaurs were long thought to be restricted to small body sizes (wingspans ca. 2.5 m, and bone histology shows it was a juvenile-subadult still actively growing when it died, making it the largest known Jurassic pterosaur represented by a well-preserved skeleton. A review of fragmentary specimens from the Middle Jurassic of England demonstrates that a diversity of pterosaurs was capable of reaching larger sizes at this time but have hitherto been concealed by a poor fossil record. Phylogenetic analysis places D. sgiathanach in a clade of basal long-tailed non-monofenestratan pterosaurs, in a subclade of larger-bodied species (Angustinaripterini) with elongate skulls convergent in some aspects with pterodactyloids.6 Far from a static prologue to the Cretaceous, the Middle Jurassic was a key interval in pterosaur evolution, in which some non-pterodactyloids diversified and experimented with larger sizes, concurrent with or perhaps earlier than the origin of birds.PostprintPeer reviewe

    A skeleton from the Middle Jurassic of Scotland illuminates an earlier origin of large pterosaurs

    No full text
    Pterosaurs were the first vertebrates to evolve flight1,2 and include the largest flying animals in Earth history.3,4 While some of the last-surviving species were the size of airplanes, pterosaurs were long thought to be restricted to small body sizes (wingspans ca. <1.8–1.6 m) from their Triassic origins through the Jurassic, before increasing in size when derived long-skulled and short-tailed pterodactyloids lived alongside a diversity of birds in the Cretaceous.5 We report a new spectacularly preserved three-dimensional skeleton from the Middle Jurassic of Scotland, which we assign to a new genus and species: Dearc sgiathanach gen. et sp. nov. Its wingspan is estimated at >2.5 m, and bone histology shows it was a juvenile-subadult still actively growing when it died, making it the largest known Jurassic pterosaur represented by a well-preserved skeleton. A review of fragmentary specimens from the Middle Jurassic of England demonstrates that a diversity of pterosaurs was capable of reaching larger sizes at this time but have hitherto been concealed by a poor fossil record. Phylogenetic analysis places D. sgiathanach in a clade of basal long-tailed non-monofenestratan pterosaurs, in a subclade of larger-bodied species (Angustinaripterini) with elongate skulls convergent in some aspects with pterodactyloids.6 Far from a static prologue to the Cretaceous, the Middle Jurassic was a key interval in pterosaur evolution, in which some non-pterodactyloids diversified and experimented with larger sizes, concurrent with or perhaps earlier than the origin of birds

    A skeleton from the Middle Jurassic of Scotland illuminates an earlier origin of large pterosaurs

    No full text
    Pterosaurs were the first vertebrates to evolve flight1,2 and include the largest flying animals in Earth history.3,4 While some of the last-surviving species were the size of airplanes, pterosaurs were long thought to be restricted to small body sizes (wingspans ca. <1.8–1.6 m) from their Triassic origins through the Jurassic, before increasing in size when derived long-skulled and short-tailed pterodactyloids lived alongside a diversity of birds in the Cretaceous.5 We report a new spectacularly preserved three-dimensional skeleton from the Middle Jurassic of Scotland, which we assign to a new genus and species: Dearc sgiathanach gen. et sp. nov. Its wingspan is estimated at >2.5 m, and bone histology shows it was a juvenile-subadult still actively growing when it died, making it the largest known Jurassic pterosaur represented by a well-preserved skeleton. A review of fragmentary specimens from the Middle Jurassic of England demonstrates that a diversity of pterosaurs was capable of reaching larger sizes at this time but have hitherto been concealed by a poor fossil record. Phylogenetic analysis places D. sgiathanach in a clade of basal long-tailed non-monofenestratan pterosaurs, in a subclade of larger-bodied species (Angustinaripterini) with elongate skulls convergent in some aspects with pterodactyloids.6 Far from a static prologue to the Cretaceous, the Middle Jurassic was a key interval in pterosaur evolution, in which some non-pterodactyloids diversified and experimented with larger sizes, concurrent with or perhaps earlier than the origin of birds

    Novel track morphotypes from new tracksites indicate increased Middle Jurassic dinosaur diversity on the Isle of Skye, Scotland

    No full text
    Dinosaur fossils from the Middle Jurassic are rare globally, but the Isle of Skye (Scotland, UK) preserves a varied dinosaur record of abundant trace fossils and rare body fossils from this time. Here we describe two new tracksites from Rubha nam Brathairean (Brothers’ Point) near where the first dinosaur footprint in Scotland was found in the 1980s. These sites were formed in subaerially exposed mudstones of the Lealt Shale Formation of the Great Estuarine Group and record a dynamic, subtropical, coastal margin. These tracksites preserve a wide variety of dinosaur track types, including a novel morphotype for Skye: Deltapodus which has a probable stegosaur trackmaker. Additionally, a wide variety of tridactyl tracks shows evidence of multiple theropods of different sizes and possibly hints at the presence of large-bodied ornithopods. Overall, the new tracksites show the dinosaur fauna of Skye is more diverse than previously recognized and give insight into the early evolution of major dinosaur groups whose Middle Jurassic body fossil records are currently sparse
    corecore