7 research outputs found

    Morpho-physiological parameters associated with chlorosis resistance to iron deficiency and their effect on yield and related attributes in potato (Solanum tuberosum L.)

    Get PDF
    The aim of the study was to assess genotypical differences over different stages for morphophysiological parameters associated with iron (Fe) deficiency and their effect on yield. The factorial pot experiment was comprised of two major factors, i) soil-Fe status of natural vertisol [Fe-sufficient and Fe-deficient soils], and ii) genotypes [CP-3443, CP- 4105, CP-3486 and CP-4069] with differential iron-induced deficiency chlorosis (IDC) response. Data were recorded and associations between different traits were estimated. Under Fe-deficient soil, tolerant genotype (CP-3443) recorded significantly higher chlorophyll content, peroxidase activity in leaves, and better yield compared to susceptible genotypes which verified usefulness as IDC tolerant potato genotypes characteristics

    Increase in root branching enhanced ferric-chelate reductase activity under iron stress in potato (Solanum tuberosum)

    No full text
    Not AvailableIn response to Fe-deficiency, various dicots increase their root branching to improve ferric-chelate reductase activity. It still remains unclear, whether the response caused by Fe-deficiency ultimately improves the plant's ability to withstand Fe-deficiency. In this experiment conducted at ICAR-Central Potato Research Institute, Regional Station, Shillong during 2020, we demonstrated a substantial increase in the growth of the lateral root of potato genotype (CP 3443), when grown in the iron-stress, in relation to control plants, and the total lateral root number is well linked to ferric-chelate reductase (FCR) activity. These findings showed that FCR is involved in root Fe uptake in potato (Solanum tuberosum L.) and they suggest a role in Fe distribution throughout the plant. In view of these findings, the Fe-deficiency induced increases in the lateral roots suggested that these play a significant role in Fe-deficiency tolerance in potato, which can serve as useful trait for the identification of chlorosis tolerance and/or nutrient-deficiency stress

    Association of qLTG3-1

    No full text

    Table_1_Root system architecture for abiotic stress tolerance in potato: Lessons from plants.DOCX

    No full text
    The root is an important plant organ, which uptakes nutrients and water from the soil, and provides anchorage for the plant. Abiotic stresses like heat, drought, nutrients, salinity, and cold are the major problems of potato cultivation. Substantial research advances have been achieved in cereals and model plants on root system architecture (RSA), and so root ideotype (e.g., maize) have been developed for efficient nutrient capture to enhance nutrient use efficiency along with genes regulating root architecture in plants. However, limited work is available on potatoes, with a few illustrations on root morphology in drought and nitrogen stress. The role of root architecture in potatoes has been investigated to some extent under heat, drought, and nitrogen stresses. Hence, this mini-review aims to update knowledge and prospects of strengthening RSA research by applying multi-disciplinary physiological, biochemical, and molecular approaches to abiotic stress tolerance to potatoes with lessons learned from model plants, cereals, and other plants.</p
    corecore