480 research outputs found

    Cyanide-Insensitive Respiration in Relation to Growth of a Low-Temperature Basidiomycete

    Full text link

    Constraints on visual exploration of youth football players during 11v11 match-play : The influence of playing role, pitch position and phase of play

    Get PDF
    Visual exploratory action, in which football players turn their head to perceive their environment, improves prospective performance with the ball during match-play. This scanning action, however, is relevant for players throughout the entire match, as the information perceived through visual exploration is needed to guide movement around the pitch during both offensive and defensive play. This study aimed to understand how a player’s on-pitch position, playing role and phase of play influenced the visual exploratory head movements of players during 11v11 match-play. Twenty-two competitive-elite youth footballers (M = 16.25 years) played a total of 1,623 minutes (M = 73.8). Inertial measurement units, global positioning system units and notational analysis were used to quantify relevant variables. Analyses revealed that players explored more extensively when they were in possession of the ball, and less extensively during transition phases, as compared to team ball-possession and opposition ball-possession phases of play. Players explored most extensively when in the back third of the pitch, and least when they were in the middle third of the pitch. Playing role, pitch position and phase of play should be considered as constraints on visual exploratory actions when developing training situations aimed at improving the scanning actions of players

    Visual exploration when surrounded by affordances : Frequency of head movements is predictive of response speed

    Get PDF
    Little is known about the actions supporting exploration and their relation to subsequent actions in situations when participants are surrounded by opportunities for action. Here, the movements that support visual exploration were related to performance in an enveloping football (soccer) passing task. Head movements of experienced football players were quantified with inertial measurement units. In a simulated football scenario, participants completed a receiving–passing task that required them to indicate pass direction to one of four surrounding targets, as quickly as they could after they gained simulated ball possession. The frequency of head movements before and after gaining ball possession and the pass response times were recorded. We controlled exploration time—the time before gaining simulated ball possession—to be 1, 2, or 3 seconds. Exploration time significantly influenced the frequency of head movements, and a higher frequency of head turns before gaining ball possession resulted in faster pass responses. Exploratory action influenced subsequent performatory action. That is, higher frequencies of head movements resulted in faster decisions. Implications for research and practice are discussed

    Principles of the guidance of exploration for orientation and specification of action

    Get PDF
    To control movement of any type, the neural system requires perceptual information to distinguish what actions are possible in any given environment. The behavior aimed at collecting this information, termed “exploration”, is vital for successful movement control. Currently, the main function of exploration is understood in the context of specifying the requirements of the task at hand. To accommodate for agency and action-selection, we propose that this understanding needs to be supplemented with a function of exploration that logically precedes the specification of action requirements with the purpose of discovery of possibilities for action—action orientation. This study aimed to provide evidence for the delineation of exploration for action orientation and exploration for action specification using the principles from “General Tau Theory.” Sixteen male participants volunteered and performed a laboratory-based exploration task. The visual scenes of different task-specific situations were projected on five monitors surrounding the participant. At a predetermined time, the participant received a simulated ball and was asked to respond by indicating where they would next play the ball. Head movements were recorded using inertial sensors as a measure of exploratory activity. It was shown that movement guidance characteristics varied between different head turns as participants moved from exploration for orientation to exploration for action specification. The first head turn in the trial, used for action-orientation, showed later peaks in the velocity profile and harder closure of the movement gap (gap between the start and end of the head-movement) in comparison to the later head turns. However, no differences were found between the first and the final head turn, which we hypothesized are used mainly for action orientation and specification respectively. These results are in support of differences in the function and control of head movement for discovery of opportunities for action (orientation) vs. head movement for specification of task requirements. Both are important for natural movement, yet in experimental settings,orientation is often neglected. Including both orientation and action specification in an experimental design should maximize generalizability of an experiment to natural behavior. Future studies are required to study the neural bases of movement guidance in order to better understand exploration in anticipation of movement

    Impact of The Daily Mile on children's physical and mental health, and educational attainment in primary schools: iMprOVE cohort study protocol

    Get PDF
    INTRODUCTION: School-based active mile initiatives such as The Daily Mile (TDM) are widely promoted to address shortfalls in meeting physical activity recommendations. The iMprOVE Study aims to examine the impact of TDM on children's physical and mental health and educational attainment throughout primary school. METHODS AND ANALYSIS: iMprOVE is a longitudinal quasi-experimental cohort study. We will send a survey to all state-funded primary schools in Greater London to identify participation in TDM. The survey responses will be used for non-random allocation to either the intervention group (Daily Mile schools) or to the control group (non-Daily Mile schools). We aim to recruit 3533 year 1 children (aged 5-6 years) from 77 primary schools and follow them up annually until the end of their primary school years. Data collection taking place at baseline (children in school year 1) and each primary school year thereafter includes device-based measures of moderate-to-vigorous physical activity (MVPA) and questionnaires to measure mental health (Strengths and Difficulties Questionnaire) and educational attainment (ratings from 'below expected' to 'above expected levels'). The primary outcome is the mean change in MVPA minutes from baseline to year 6 during the school day among the intervention group compared with controls. We will use multilevel linear regression models adjusting for sociodemographic data and participation in TDM. The study is powered to detect a 10% (5.5 min) difference between the intervention and control group which would be considered clinically significant. ETHICS AND DISSEMINATION: Ethics has been approved from Imperial College Research Ethics Committee, reference 20IC6127. Key findings will be disseminated to the public through research networks, social, print and media broadcasts, community engagement opportunities and schools. We will work with policy-makers for direct application and impact of our findings

    Making the user more efficient: Design for sustainable behaviour

    Get PDF
    User behaviour is a significant determinant of a product’s environmental impact; while engineering advances permit increased efficiency of product operation, the user’s decisions and habits ultimately have a major effect on the energy or other resources used by the product. There is thus a need to change users’ behaviour. A range of design techniques developed in diverse contexts suggest opportunities for engineers, designers and other stakeholders working in the field of sustainable innovation to affect users’ behaviour at the point of interaction with the product or system, in effect ‘making the user more efficient’. Approaches to changing users’ behaviour from a number of fields are reviewed and discussed, including: strategic design of affordances and behaviour-shaping constraints to control or affect energyor other resource-using interactions; the use of different kinds of feedback and persuasive technology techniques to encourage or guide users to reduce their environmental impact; and context-based systems which use feedback to adjust their behaviour to run at optimum efficiency and reduce the opportunity for user-affected inefficiency. Example implementations in the sustainable engineering and ecodesign field are suggested and discussed

    Electronic Structures of an [Fe(NNR_2)]^(+/0/–) Redox Series: Ligand Noninnocence and Implications for Catalytic Nitrogen Fixation

    Get PDF
    The intermediacy of metal–NNH_2 complexes has been implicated in the catalytic cycles of several examples of transition-metal-mediated nitrogen (N_2) fixation. In this context, we have shown that triphosphine-supported Fe(N_2) complexes can be reduced and protonated at the distal N atom to yield Fe(NNH_2) complexes over an array of charge and oxidation states. Upon exposure to further H^+/e^– equivalents, these species either continue down a distal-type Chatt pathway to yield a terminal iron(IV) nitride or instead follow a distal-to-alternating pathway resulting in N–H bond formation at the proximal N atom. To understand the origin of this divergent selectivity, herein we synthesize and elucidate the electronic structures of a redox series of Fe(NNMe_2) complexes, which serve as spectroscopic models for their reactive protonated congeners. Using a combination of spectroscopies, in concert with density functional theory and correlated ab initio calculations, we evidence one-electron redox noninnocence of the “NNMe_2” moiety. Specifically, although two closed-shell configurations of the “NNR_2” ligand have been commonly considered in the literature—isodiazene and hydrazido(2−)—we provide evidence suggesting that, in their reduced forms, the present iron complexes are best viewed in terms of an open-shell [NNR_2]^‱–ligand coupled antiferromagnetically to the Fe center. This one-electron redox noninnocence resembles that of the classically noninnocent ligand NO and may have mechanistic implications for selectivity in N_2 fixation activity

    Don’t Turn Blind! The Relationship Between Exploration Before Ball Possession and On-Ball Performance in Association Football

    Get PDF
    Visual exploratory action – scanning movements expressed through left and right rotation of the head – allows perception of a surrounding environment and supports prospective actions. In the dynamically changing football environment, the extent to which exploratory action benefits a player’s subsequent performance with the ball is likely influenced by how and when the exploratory action occurs. Although few studies have examined the relationship between visual exploration and on-pitch football performance, it has been reported that a higher frequency of exploratory head movement up to 10-s before receiving the ball increases the likelihood of successful performance with the ball. This study investigated the relationship between head turn frequency and head turn excursion, and how and when exploratory head movement – within 10-s before ball possession – is related to performance with the ball in 11v11 match-play. Thirty-two semi-elite football players competed in 11v11 match-play. Head turn frequency and head turn excursion before ball possession were quantified with wearable inertial measurement units, and actions with the ball were coded via notational analysis. Odds ratio calculations were conducted to determine the associations between exploration variables and on-ball performance outcomes. A total of 783 actions with the ball were analyzed. Results revealed a strong relationship between head turn frequency and head turn excursion. Further, a higher than average head turn frequency and head turn excursion before receiving the ball resulted in a higher likelihood of turning with the ball, playing a pass in the attacking direction, and playing a pass to an area that is opposite to which it was received from. The strength of these outcomes varied for different time periods before receiving the ball. When players explored their environment with higher than average head turn frequency and excursion, they used more complex action opportunities afforded by the surrounding environment. Considerations for future research and practical implications are discussed

    Human antibodies targeting cell surface antigens overexpressed by the hormone refractory metastatic prostate cancer cells: ICAM-1 is a tumor antigen that mediates prostate cancer cell invasion

    Get PDF
    Transition from hormone-sensitive to hormone-refractory metastatic tumor types poses a major challenge for prostate cancer treatment. Tumor antigens that are differentially expressed during this transition are likely to play important roles in imparting prostate cancer cells with the ability to grow in a hormone-deprived environment and to metastasize to distal sites such as the bone and thus, are likely targets for therapeutic intervention. To identify those molecules and particularly cell surface antigens that accompany this transition, we studied the changes in cell surface antigenic profiles between a hormone-sensitive prostate cancer line LNCaP and its hormone-refractory derivative C4-2B, using an antibody library-based affinity proteomic approach. We selected a naĂŻve phage antibody display library to identify human single-chain antibodies that bind specifically to C4-2B but not LNCaP. Using mass spectrometry, we identified one of the antibody-targeted antigens as the ICAM-1/CD54/human rhinovirus receptor. Recombinant IgG1 derived from this single-chain antibody binds to a neutralizing epitope of ICAM-1 and blocks C4-2B cell invasion through extracellular matrix in vitro. ICAM-1 is thus differentially expressed during the transition of the hormone-sensitive prostate cancer cell line LNCaP to its hormone-refractory derivative C4-2B, plays an important role in imparting the C4-2B line with the ability to invade, and may therefore be a target for therapeutic intervention
    • 

    corecore