944 research outputs found

    Statistical properties of eigenvectors in non-Hermitian Gaussian random matrix ensembles

    Full text link
    Statistical properties of eigenvectors in non-Hermitian random matrix ensembles are discussed, with an emphasis on correlations between left and right eigenvectors. Two approaches are described. One is an exact calculation for Ginibre's ensemble, in which each matrix element is an independent, identically distributed Gaussian complex random variable. The other is a simpler calculation using N1N^{-1} as an expansion parameter, where NN is the rank of the random matrix: this is applied to Girko's ensemble. Consequences of eigenvector correlations which may be of physical importance in applications are also discussed. It is shown that eigenvalues are much more sensitive to perturbations than in the corresponding Hermitian random matrix ensembles. It is also shown that, in problems with time-evolution governed by a non- Hermitian random matrix, transients are controlled by eigenvector correlations

    Caustic formation in expanding condensates of cold atoms

    Full text link
    We study the evolution of density in an expanding Bose-Einstein condensate that initially has a spatially varying phase, concentrating on behaviour when these phase variations are large. In this regime large density fluctuations develop during expansion. Maxima have a characteristic density that diverges with the amplitude of phase variations and their formation is analogous to that of caustics in geometrical optics. We analyse in detail caustic formation in a quasi-one dimensional condensate, which before expansion is subject to a periodic or random optical potential, and we discuss the equivalent problem for a quasi-two dimensional system. We also examine the influence of many-body correlations in the initial state on caustic formation for a Bose gas expanding from a strictly one-dimensional trap. In addition, we study a similar arrangement for non-interacting fermions, showing that Fermi surface discontinuities in the momentum distribution give rise in that case to sharp peaks in the spatial derivative of the density. We discuss recent experiments and argue that fringes reported in time of flight images by Chen and co-workers [Phys. Rev. A 77, 033632 (2008)] are an example of caustic formation.Comment: 10 pages, 5 figures. Published versio

    Critical Conductance of a Mesoscopic System: Interplay of the Spectral and Eigenfunction Correlations at the Metal-Insulator Transition

    Full text link
    We study the system-size dependence of the averaged critical conductance g(L)g(L) at the Anderson transition. We have: (i) related the correction δg(L)=g()g(L)Ly\delta g(L)=g(\infty)-g(L)\propto L^{-y} to the spectral correlations; (ii) expressed δg(L)\delta g(L) in terms of the quantum return probability; (iii) argued that y=ηy=\eta -- the critical exponent of eigenfunction correlations. Experimental implications are discussed.Comment: minor changes, to be published in PR

    Specific heat of the S=1/2 Heisenberg model on the kagome lattice: high-temperature series expansion analysis

    Full text link
    We compute specific heat of the antiferromagnetic spin-1/2 Heisenberg model on the kagome lattice. We use a recently introduced technique to analyze high-temperature series expansion based on the knowledge of high-temperature series expansions, the total entropy of the system and the low-temperature expected behavior of the specific heat as well as the ground-state energy. In the case of kagome-lattice antiferromagnet, this method predicts a low-temperature peak at T/J<0.1.Comment: 6 pages, 5 color figures (.eps), Revtex 4. Change in version 3: Fig. 5 has been corrected (it now shows data for 3 different ground-state energies). The text is unchanged. v4: corrected an error in the temperature scale of Fig. 5. (text unchanged

    Doping a topological quantum spin liquid: slow holes in the Kitaev honeycomb model

    Full text link
    We present a controlled microscopic study of mobile holes in the spatially anisotropic (Abelian) gapped phase of the Kitaev honeycomb model. We address the properties of (i) a single hole [its internal degrees of freedom as well as its hopping properties]; (ii) a pair of holes [their (relative) particle statistics and interactions]; (iii) the collective state for a finite density of holes. We find that each hole in the doped model has an eight-dimensional internal space, characterized by three internal quantum numbers: the first two "fractional" quantum numbers describe the binding to the hole of the fractional excitations (fluxes and fermions) of the undoped model, while the third "spin" quantum number determines the local magnetization around the hole. The fractional quantum numbers also encode fundamentally distinct particle properties, topologically robust against small local perturbations: some holes are free to hop in two dimensions, while others are confined to hop in one dimension only; distinct hole types have different particle statistics, and in particular, some of them exhibit non-trivial (anyonic) relative statistics. These particle properties in turn determine the physical properties of the multi-hole ground state at finite doping, and we identify two distinct ground states with different hole types that are stable for different model parameters. The respective hopping dimensionalities manifest themselves in an electrical conductivity approximately isotropic in one ground state and extremely anisotropic in the other one. We also compare our microscopic study with related mean-field treatments, and discuss the main discrepancies between the two approaches, which in particular involve the possibility of binding fractional excitations as well as the particle statistics of the holes.Comment: 29 pages, 14 figures, published version with infinitesimal change

    Density of quasiparticle states for a two-dimensional disordered system: Metallic, insulating, and critical behavior in the class D thermal quantum Hall effect

    Get PDF
    We investigate numerically the quasiparticle density of states ϱ(E)\varrho(E) for a two-dimensional, disordered superconductor in which both time-reversal and spin-rotation symmetry are broken. As a generic single-particle description of this class of systems (symmetry class D), we use the Cho-Fisher version of the network model. This has three phases: a thermal insulator, a thermal metal, and a quantized thermal Hall conductor. In the thermal metal we find a logarithmic divergence in ϱ(E)\varrho(E) as E0E\to 0, as predicted from sigma model calculations. Finite size effects lead to superimposed oscillations, as expected from random matrix theory. In the thermal insulator and quantized thermal Hall conductor, we find that ϱ(E)\varrho(E) is finite at E=0. At the plateau transition between these phases, ϱ(E)\varrho(E) decreases towards zero as E|E| is reduced, in line with the result ϱ(E)Eln(1/E)\varrho(E) \sim |E|\ln(1/|E|) derived from calculations for Dirac fermions with random mass.Comment: 8 pages, 8 figures, published versio

    Strong eigenfunction correlations near the Anderson localization transition

    Full text link
    We study overlap of two different eigenfunctions as compared with self-overlap in the framework of an infinite-dimensional version of the disordered tight-binding model. Despite a very sparse structure of the eigenstates in the vicinity of Anderson transition their mutual overlap is still found to be of the same order as self-overlap as long as energy separation is smaller than a critical value. The latter fact explains robustness of the Wigner-Dyson level statistics everywhere in the phase of extended states. The same picture is expected to hold for usual d-dimensional conductors, ensuring the sβs^{\beta} form of the level repulsion at critical point.Comment: 4 pages, RevTe

    Dzyaloshinski-Moriya interactions in the kagome lattice

    Full text link
    The kagom\'e lattice exhibits peculiar magnetic properties due to its strongly frustated cristallographic structure, based on corner sharing triangles. For nearest neighbour antiferromagnetic Heisenberg interactions there is no Neel ordering at zero temperature both for quantum and classical s pins. We show that, due to the peculiar structure, antisymmetric Dzyaloshinsky-Moriya interactions (D.(Si×Sj){\bf D} . ({\bf S}_i \times {\bf S}_j)) are present in this latt ice. In order to derive microscopically this interaction we consider a set of localized d-electronic states. For classical spins systems, we then study the phase diagram (T, D/J) through mean field approximation and Monte-Carlo simulations and show that the antisymmetric interaction drives this system to ordered states as soon as this interaction is non zero. This mechanism could be involved to explain the magnetic structure of Fe-jarosites.Comment: 4 pages, 2 figures. Presented at SCES 200

    Point-Contact Conductances from Density Correlations

    Full text link
    We formulate and prove an exact relation which expresses the moments of the two-point conductance for an open disordered electron system in terms of certain density correlators of the corresponding closed system. As an application of the relation, we demonstrate that the typical two-point conductance for the Chalker-Coddington model at criticality transforms like a two-point function in conformal field theory.Comment: 4 pages, 2 figure

    Anderson localisation in tight-binding models with flat bands

    Full text link
    We consider the effect of weak disorder on eigenstates in a special class of tight-binding models. Models in this class have short-range hopping on periodic lattices; their defining feature is that the clean systems have some energy bands that are dispersionless throughout the Brillouin zone. We show that states derived from these flat bands are generically critical in the presence of weak disorder, being neither Anderson localised nor spatially extended. Further, we establish a mapping between this localisation problem and the one of resonances in random impedance networks, which previous work has suggested are also critical. Our conclusions are illustrated using numerical results for a two-dimensional lattice, known as the square lattice with crossings or the planar pyrochlore lattice.Comment: 5 pages, 3 figures, as published (this version includes minor corrections
    corecore