4,007 research outputs found

    Development of passive radiation detectors of improved sensitivity

    Get PDF
    The future development of a solid track high energy particle detector is discussed. The goal is to improve the sensitivity and lower the threshold of the detector. One most widely used material for such purpose is a plastic commercially known as CR-39. A scheme is presented which involves changing the formula of the monomer, diethylene glycol-bis-allyl carbonate. This is to be accomplished by substituting some heteroatoms for H and substituting sulfur atoms for oxygen in the ether linkages. Use of a new plasticizer to make the etched surface clearer than what has been accomplished as of today is suggested. Possible improvement in acquiring better tracks and increasing the ratio of V sub T/V sub B was planned. This is to be accomplished by changing the composition of the etchants, etching time, and etching temperature

    A Double Outburst from IGR J00291+5934: Implications for Accretion Disk Instability Theory

    Full text link
    The accretion-powered millisecond pulsar IGR J00291+5934 underwent two ~10 d long outbursts during 2008, separated by 30 d in quiescence. Such a short quiescent period between outbursts has never been seen before from a neutron star X-ray transient. X-ray pulsations at the 599 Hz spin frequency are detected throughout both outbursts. For the first time, we derive a pulse phase model that connects two outbursts, providing a long baseline for spin frequency measurement. Comparison with the frequency measured during the 2004 outburst of this source gives a spin-down during quiescence of -4(1)x10^-15 Hz/s, approximately an order of magnitude larger than the long-term spin-down observed in the 401 Hz accretion-powered pulsar SAX J1808.4-3658. If this spin-down is due to magnetic dipole radiation, it requires a 2x10^8 G field strength, and its high spin-down luminosity may be detectable with the Fermi Large Area Telescope. Alternatively, this large spin-down could be produced by gravitational wave emission from a fractional mass quadrupole moment of Q/I = 1x10^{-9}. The rapid succession of the outbursts also provides a unique test of models for accretion in low-mass X-ray binaries. Disk instability models generally predict that an outburst will leave the accretion disk too depleted to fuel a second outburst after such a brief quiescence. We suggest a modification in which the outburst is shut off by the onset of a propeller effect before the disk is depleted. This model can explain the short quiescence and the unusually slow rise of the light curve of the second 2008 outburst.Comment: 17 pages, 8 figures; accepted by Ap
    • …
    corecore