82 research outputs found

    Pair-correlation properties and momentum distribution of finite number of interacting trapped bosons in three dimension

    Full text link
    We study the ground state pair-correlation properties of a weakly interacting trapped Bose gas in three dimension by using a correlated many-body method. Use of the van der Waals interaction potential and an external trapping potential shows realistic features. We also test the validity of shape-independent approximation in the calculation of correlation properties.Comment: Accepted for publication in The Journal of Chemical Physic

    Effective Municipal Solid Waste Management in India

    Get PDF

    Stability of attractive bosonic cloud with van der Waals interaction

    Full text link
    We investigate the structure and stability of Bose-Einstein condensate of 7^{7}Li atoms with realistic van der Waals interaction by using the potential harmonic expansion method. Besides the known low-density metastable solution with contact delta function interaction, we find a stable branch at a higher density which corresponds to the formation of an atomic cluster. Comparison with the results of non-local effective interaction is also presented. We analyze the effect of trap size on the transition between the two branches of solutions. We also compute the loss rate of a Bose condensate due to two- and three-body collisions.Comment: 9 pages, 5 figure

    Destruction of attractive bosonic cloud due to high spatial coherence in tight trap

    Full text link
    We study coherence of a trapped bosonic cloud with attractive finite-range interaction in a tight harmonic trap. One-body density and pair-distribution function in the ground state for different trap sizes are calculated. We also calculate healing length and the correlation length which signify the presence of high spatial coherence in a very tight trap leading to the destruction of the condensate for a fixed particle number. This is in marked variance with the usual collapse of the attractive metastable condensate when N > Ncr . Thus we investigate the critical frequency and critical size of the trap for the existence of attractive Bose-Einstein condensation. The finite-range interaction gives a nonlocal effect in the effective many-body potential, and we observe a high-density stable branch besides the known metastable branch. Moreover, the new branch shows universal behavior even in the very tight trap

    Continuous transition of social efficiencies in the stochastic strategy Minority Game

    Full text link
    We show that in a variant of the Minority Game problem, the agents can reach a state of maximum social efficiency, where the fluctuation between the two choices is minimum, by following a simple stochastic strategy. By imagining a social scenario where the agents can only guess about the number of excess people in the majority, we show that as long as the guess value is sufficiently close to the reality, the system can reach a state of full efficiency or minimum fluctuation. A continuous transition to less efficient condition is observed when the guess value becomes worse. Hence, people can optimize their guess value for excess population to optimize the period of being in the majority state. We also consider the situation where a finite fraction of agents always decide completely randomly (random trader) as opposed to the rest of the population that follow a certain strategy (chartist). For a single random trader the system becomes fully efficient with majority-minority crossover occurring every two-days interval on average. For just two random traders, all the agents have equal gain with arbitrarily small fluctuations.Comment: 8 pages, 6 fig

    Time-dependent density functional theory calculation of van der Waals coefficient of sodium clusters

    Full text link
    In this paper we employ all-electron \textit{ab-initio} time-dependent density functional theory based method to calculate the long range dipole-dipole dispersion coefficient (van der Waals coefficient) C6C_{6} of sodium atom clusters containing even number of atoms ranging from 2 to 20 atoms. The dispersion coefficients are obtained via Casimir-Polder relation. The calculations are carried out with two different exchange-correlation potentials: (i) the asymptotically correct statistical average of orbital potential (SAOP) and (ii) Vosko-Wilk-Nusair representation of exchange-correlation potential within local density approximation. A comparison with the other theoretical results has been performed. We also present the results for the static polarizabilities of sodium clusters and also compare them with other theoretical and experimental results. These comparisons reveal that the SAOP results for C_{6} and static polarizability are quite accurate and very close to the experimental results. We examine the relationship between volume of the cluster and van der Waals coefficient and find that to a very high degree of correlation C_{6} scales as square of the volume. We also present the results for van der Waals coefficient corresponding to cluster-Ar atom and cluster-N_{2} molecule interactions.Comment: 22 pages including 6 figures. To be published in Journal of Chemical Physic
    • …
    corecore