7 research outputs found

    Evidence for Host-Bacterial Co-evolution via Genome Sequence Analysis of 480 Thai Mycobacterium tuberculosis Lineage 1 Isolates.

    Get PDF
    Tuberculosis presents a global health challenge. Mycobacterium tuberculosis is divided into several lineages, each with a different geographical distribution. M. tuberculosis lineage 1 (L1) is common in the high-burden areas in East Africa and Southeast Asia. Although the founder effect contributes significantly to the phylogeographic profile, co-evolution between the host and M. tuberculosis may also play a role. Here, we reported the genomic analysis of 480 L1 isolates from patients in northern Thailand. The studied bacterial population was genetically diverse, allowing the identification of a total of 18 sublineages distributed into three major clades. The majority of isolates belonged to L1.1 followed by L1.2.1 and L1.2.2. Comparison of the single nucleotide variant (SNV) phylogenetic tree and the clades defined by spoligotyping revealed some monophyletic clades representing EAI2_MNL, EAI2_NTM and EAI6_BGD1 spoligotypes. Our work demonstrates that ambiguity in spoligotype assignment could be partially resolved if the entire DR region is investigated. Using the information to map L1 diversity across Southeast Asia highlighted differences in the dominant strain-types in each individual country, despite extensive interactions between populations over time. This finding supported the hypothesis that there is co-evolution between the bacteria and the host, and have implications for tuberculosis disease control

    A novel Ancestral Beijing sublineage of Mycobacterium tuberculosis suggests the transition site to Modern Beijing sublineages.

    Get PDF
    Global Mycobacterium tuberculosis population comprises 7 major lineages. The Beijing strains, particularly the ones classified as Modern groups, have been found worldwide, frequently associated with drug resistance, younger ages, outbreaks and appear to be expanding. Here, we report analysis of whole genome sequences of 1170 M. tuberculosis isolates together with their patient profiles. Our samples belonged to Lineage 1-4 (L1-L4) with those of L1 and L2 being equally dominant. Phylogenetic analysis revealed several new or rare sublineages. Differential associations between sublineages of M. tuberculosis and patient profiles, including ages, ethnicity, HIV (human immunodeficiency virus) infection and drug resistance were demonstrated. The Ancestral Beijing strains and some sublineages of L4 were associated with ethnic minorities while L1 was more common in Thais. L2.2.1.Ancestral 4 surprisingly had a mutation that is typical of the Modern Beijing sublineages and was common in Akha and Lahu tribes who have migrated from Southern China in the last century. This may indicate that the evolutionary transition from the Ancestral to Modern Beijing sublineages might be gradual and occur in Southern China, where the presence of multiple ethnic groups might have allowed for the circulations of various co-evolving sublineages which ultimately lead to the emergence of the Modern Beijing strains

    Genotypic Distribution and the Epidemiology of Multidrug Resistant Tuberculosis in Upper Northern Thailand

    No full text
    The epidemiology and genotypes of multidrug-resistant tuberculosis (MDR-TB), a global public health threat, remain limited. The genotypic distribution and factors associated with MDR-TB in upper northern Thailand between 2015 and 2019 were investigated. The DNA sequencing of rpoB, katG, and inhA promoter of 51 multidrug-resistant Mycobacterium tuberculosis isolates revealed nine patterns of the rpoB gene mutation distributed in seven provinces. The S531L mutation was the most common mutation in all provinces. The rpoB mutation in Chiang Rai, Chiang Mai, and Lampang was highly diverse compared to other areas. Here, the mutation profiles that have yet to be reported in northern Thailand (H526P, Q513P, and H526C) were detected in Chiang Rai province. The S315T katG mutation was the most common genotype associated with INH resistance, especially in Chiang Mai and Lampang. Further analysis of data from 110 TB patients (42 MDR-TB and 68 drug-susceptible TB) revealed that p = 0.011) and ≥60 years of age was a significant factor associated with the S315T katG-mutation (OR = 8.867, 95% CI 0.981–80.177, p = 0.047). This study highlighted the necessity for continuous surveillance and risk factor monitoring for effective control of MDR-TB

    Multi-platform whole genome sequencing for tuberculosis clinical and surveillance applications

    No full text
    Abstract Whole genome sequencing (WGS) of Mycobacterium tuberculosis offers valuable insights for tuberculosis (TB) control. High throughput platforms like Illumina and Oxford Nanopore Technology (ONT) are increasingly used globally, although ONT is known for higher error rates and is less established for genomic studies. Here we present a study comparing the sequencing outputs of both Illumina and ONT platforms, analysing DNA from 59 clinical isolates in highly endemic TB regions of Thailand. The resulting sequence data were used to profile the M. tuberculosis pairs for their lineage, drug resistance and presence in transmission chains, and were compared to publicly available WGS data from Thailand (n = 1456). Our results revealed isolates that are predominantly from lineages 1 and 2, with consistent drug resistance profiles, including six multidrug-resistant strains; however, analysis of ONT data showed longer phylogenetic branches, emphasising the technologies higher error rate. An analysis incorporating the larger dataset identified fifteen of our samples within six potential transmission clusters, including a significant clade of 41 multi-drug resistant isolates. ONT's extended sequences also revealed strain-specific structural variants in pe/ppe genes (e.g. ppe50), which are candidate loci for vaccine development. Despite some limitations, our results show that ONT sequencing is a promising approach for TB genomic research, supporting precision medicine and decision-making in areas with less developed infrastructure, which is crucial for tackling the disease’s significant regional burden
    corecore