34 research outputs found

    Evaluation of Analytical Methods to Study Aquifer Properties with Pumping Test in Deccan Basalt Region of the Morna River Basin in Akola District of Maharashtra in India

    Get PDF
    Fifteen pumping tests were performed in the Deccan basalt region of the Morna river basin in Akola district of Maharashtra in India. It is an artesian well as it is in the discharge zone of this coastal aquifer. Transmissivity (T) and storage coefficient (S) must be considered as aquifer parameters and used in groundwater recharge analysis. During the analysis of time-drawdown, the graphs were developed using pumping test methods and most of the pumps’ water initially comes from the well storage. Analysis of the well in tapping aquifer in Deccan basalt shows the existing relationship between porosity and specific yield. All of the aquifer testing methods have suggested ground recharge structures such as open well, bore well, and reservoir in hard rock terrains. The data and information are very helpful for hydraulic conditions, aquifer zones, and open wells development and management. The aquifer’s parameters are identified as important factors for groundwater resources evaluation, numerical simulation, development and protection as well as scientific management. The results are optimized, hence these aquifer parameters are important for scientific planning and engineering practices

    The Effect of the El Nino Southern Oscillation on Precipitation Extremes in the Hindu Kush Mountains Range

    Get PDF
    The El Nino Southern Oscillation (ENSO) phenomenon is devastating as it negatively impacts global climatic conditions, which can cause extreme events, including floods and droughts, which are harmful to the region’s economy. Pakistan is also considered one of the climate change hotspot regions in the world. Therefore, the present study investigates the effect of the ENSO on extreme precipitation events across the Upper Indus Basin. We examined the connections between 11 extreme precipitation indices (EPIs) and two ENSO indicators, the Southern Oscillation Index (SOI) and the Oceanic Niño Index (ONI). This analysis covers both annual and seasonal scales and spans the period from 1971 to 2019. Statistical tests (i.e., Mann–Kendall (MK) and Innovative Trend Analysis (ITA)) were used to observe the variations in the EPIs. The results revealed that the number of Consecutive Dry Days (CDDs) is increasing more than Consecutive Wet Days (CWDs); overall, the EPIs exhibited increasing trends, except for the Rx1 (max. 1-day precipitation) and Rx5 (max. 5-day precipitation) indices. The ENSO indicator ONI is a temperature-related ENSO index. The results further showed that the CDD value has a significant positive correlation with the SOI for most of the UIB (Upper Indus Basin) region, whereas for the CWD value, high elevated stations gave a positive relationship. A significant negative relationship was observed for the lower portion of the UIB. The Rx1 and Rx5 indices were observed to have a negative relationship with the SOI, indicating that El Nino causes heavy rainfall. The R95p (very wet days) and R99p (extreme wet days) indices were observed to have significant negative trends in most of the UIB. In contrast, high elevated stations depicted a significant positive relationship that indicates they are affected by La Nina conditions. The PRCPTOT index exhibited a negative relationship with the SOI, revealing that the El Nino phase causes wet conditions in the UIB. The ONI gave a significant positive relationship for the UIB region, reinforcing the idea that both indices exhibit more precipitation during El Nino. The above observations imply that while policies are being developed to cope with climate change impacts, the effects of the ENSO should also be considered

    Land use/land cover and change detection mapping in Rahuri watershed area (MS), India using the google earth engine and machine learning approach

    No full text
    The change detection and land use and land cover (LULC) maps are more important powerful forces behind numerous ecological systems and fallow land. The current research focuses on demarcating the spatiotemporal LULC changes, NDVI and change detections maps. These effects directly affect the ecosystem, land resources, cropping pattern and agriculture. LULC assessment and surveillance are essential for long-term planning and sustainable use of natural resources. However, we have developed the soft computing machine learning algorithm for mapping land use and land cover based on the Google earth engine (GEE) platform and change detection mapping done by SAGA GIS software. It is significantly used for ecological safety and planning under various climate variations. To accurately describe the land use and land cover classes with changes are identified in the area. This area exclusively uses the multitemporal Landsat-5 (30 m) and Sentinel-2 (10 m) imageries in LULC mapping. The GEE is a cloud-computing platform with the prevailing classification ability of random forest (RF) models to make five-year interval LULC maps for 2010, 2015 and 2020. To unique multiple RF models established as a classifier in the algorithm created by JavaScript and GEE. SAGA GIS has provided the best platform for detecting changes in land use and land cover classes. NDVI maps are created based on the cloud-based platform. These maps value ranges between −0.68 to −0.15, 0.76 to −0.29 and 0.66 to −0.11 in 2010, 2015 and 2020. Experimental outcomes indicate five classes such as water bodies, built up, barren, cropland and fallow land during 2010, 2015 and 2020. The overall accuracy of User and Producer for 2010, 2015 and 2019 years in between 86.23%, 88.34%, 85.53% and 92.51%, 94.34% and 91.54%, respectively. We have observed that (2010, 2015 − 2020) agriculture and built-up land increased by 1040.76 ha, 1246.32 ha, 1500.93 ha and 34.96 ha, 37.08 ha, 42.58 ha, respectively. Other side degraded land, fallow land, waterbodies areas (953.19 ha, 679.23 ha, 937.24 ha and 1385.73 ha, 1513.53 ha, 991.08 ha and 32.85 ha, 21.33 ha, 25.66 ha) are increased during the year of 2010, 2015 and 2020, respectively. While results have been done by GEE cloud platform and remote sensing data, this developed algorithm easily classified the land use maps from Landsat-5 and Sentinel-2 TM imagery in the machine learning approach. The determined 30-m and 10-m three-year LULC maps are made-up to deliver vital data on the changes, monitoring and understanding of which types of LULC classes and changes have occupied a place in the Rahuri area

    Spatial analysis of groundwater quality mapping in hard rock area in the Akola and Buldhana districts of Maharashtra, India

    No full text
    Abstract The study of groundwater quality parameters is most essential for irrigation and drinking water, and its quality is a serious problem around the study area. The spatial analysis of groundwater quality mapping is required and stimulated us to undertake a systematic work of groundwater quality parameters for suitable water exploration of crops and drinking purposes from bore wells and open wells in basaltic hard rock area. A detailed study of physico-chemical parameters composition of groundwater was performed from groundwater quality data of post-monsoon (December) in the year of 2013. The groundwater quality data were collected from 35 wells samples randomly distributed in area. GIS is a powerful tool for representation and analysis of spatial information related to groundwater resources management. To achieve this aim, the groundwater quality samples were analysed for the preparation of groundwater quality maps such as pH, electrical conductivity, TDS, Cl and Mg. The groundwater quality parameters were analysed for all the sampling locations using IWD interpolation techniques. In this study, groundwater quality values observed are minimum and maximum values of pH (6.2–8 on scale), electrical conductivity (348–1598 S/cm), total dissolved solids (268.32–707.95 mg/l), carbonate (0–30 mg/l), bicarbonate (0.9–58.9 mg/l), chloride (1.15–28.36 mg/l), sulphate (17.4–105 mg/l), nitrate (0.4–6.0 mg/l), calcium (2.35–7.24 mg/l), magnesium (2.88–3.73 mg/l), sodium (0.57–3.31 mg/l), potassium (0.26–1.2 mg/l), sulphate (0.5–4.64 mg/l), bicarbonate+ carbonate (1.07–11.16 mg/l) and carbonate (0–0.79 mg/l) in hard rock area. The spatial variation maps were derived and integrated through ARC GIS 10.3 software. The interpolation tool was used to obtain the spatial distribution of groundwater quality parameters in the basaltic hard rock area. Therefore, the result of groundwater analysis of large number of groundwater samples has been found to be suitable for drinking and irrigation purposes in the basaltic hard rock area

    Assessment of current and future trends in water resources in the Gambia River Basin in a context of climate change

    No full text
    Abstract Accurate assessment of water resources at the watershed level is crucial for effective integrated watershed management. While semi-distributed/distributed models require complex structures and large amounts of input data, conceptual models have gained attention as an alternative to watershed modeling. In this paper, the performance of the GR4J conceptual model for runoff simulation in the Gambia watershed at Simenti station is analyzed over the calibration (1981–1990) and validation period (1991–2000 and 2001–2010). The main inputs to conceptual models like GR4J are daily precipitation data and potential evapotranspiration (PET) measured from the same catchment or a nearby location. Calibration of these models is typically performed using the Nash–Sutcliffe daily efficiency with a bias penalty as the objective function. In this case, the GR4J model is calibrated using four optimization parameters. To evaluate the effectiveness of the model's runoff predictions, various statistical measures such as Nash–Sutcliffe efficiency, coefficient of determination, bias, and linear correlation coefficient are calculated. The results obtained in the Gambia watershed at Simenti station indicate satisfactory performance of the GR4J model in terms of forecast accuracy and computational efficiency. The Nash–Sutcliffe (Q) values are 0.623 and 0.711 during the calibration period (1981–1990) and the validation period (1991–2000), respectively. The average annual flow observed during the calibration period is 0.385 mm while it increases with a value of 0.603 mm during the validation period. As for the average flow simulated by the model, it is 0.142 mm during the calibration period (i.e., a delay of 0.142 mm compared to the observed flow), 0.626 mm in the validation period (i.e., an excess of 0.023 mm compared to the observed flow). However, this study is significant because it shows significant changes in all metrics in the watershed sample under different scenarios, especially the SSP245 and SSP585 scenarios over the period 2021–2100. These changes suggest a downward trend in flows, which would pose significant challenges for water management. Therefore, it is clear that sustainable water management would require substantial adaptation measures to cope with these changes

    Understanding the Climate Change and Land Use Impact on Streamflow in the Present and Future under CMIP6 Climate Scenarios for the Parvara Mula Basin, India

    No full text
    Understanding the likely impacts of climate change (CC) and Land Use Land Cover (LULC) on water resources (WR) is critical for a water basin’s mitigation. The present study intends to quantify the impact of (CC) and (LULC) on the streamflow (SF) of the Parvara Mula Basin (PMB) using SWAT. The SWAT model was calibrated and validated using the SWAT Calibration Uncertainty Program (SWAT-CUP) for the two time periods (2003–2007 and 2013–2016) and (2008–2010 and 2017–2018), respectively. To evaluate the model’s performance, statistical matrices such as R2, NSE, PBIAS, and RSR were computed for both the calibrated and validated periods. For both these periods, the calibrated and validated results of the model were found to be very good. In this study, three bias-corrected CMIP6 GCMs (ACCESS-CM2, BCC-CSM2-MR, and CanESM5) under three scenarios (ssp245, ssp370, and ssp585) have been adopted by assuming no change in the existing LULC (2018). The results obtained from the SWAT simulation at the end of the century show that there will be an increase in streamflow (SF) by 44.75% to 53.72%, 45.80% to 77.31%, and 48.51% to 83.12% according to ACCESS-CM2, BCC-CSM2-MR, and CanESM5, respectively. A mean ensemble model was created to determine the net change in streamflow under different scenarios for different future time projections. The results obtained from the mean ensembled model also reveal an increase in the SF for the near future (2020–2040), mid future (2041–2070), and far future (2071–2100) to be 64.19%, 47.33%, and 70.59%, respectively. Finally, based on the obtained results, it was concluded that the CanESM5 model produces better results than the ACCESS-CM2 and BCC-CSM2-MR models. As a result, the streamflow evaluated with this model can be used for the PMB’s future water management strategies. Thus, this study’s findings may be helpful in developing water management strategies and preventing the pessimistic effect of CC in the PMB

    Study of land use classification in an arid region using multispectral satellite images

    No full text
    Abstract Rapid urbanization and deforestation have led to increased areas of wasteland in the northern region of the Akola district of Maharashtra, India. This study investigates land use variations in the arid region with the help of multi-temporal images. Land use maps were employed for analysis of different classes using image classification tools in ArcGIS software. Multispectral satellite imagery data were used to create land cover variation maps and land use forecast maps for the study area. The land use classification change maps were produced from LISS-III satellite images and Landsat Enhanced Thematic Mapper Plus (2008 and 2015) using supervised classification techniques. Land use was divided into five major classes, i.e. agricultural land, developed land, wasteland, water bodies, and forestland. We observed significant changes in agricultural and forestland as a result of many factors including population growth, drought conditions, road infrastructure development, flooding, and soil erosion in the arid area. The overall accuracy of the supervised classification was 94.10% for 2008 and 88.14% for 2015, using the kappa method, which was a satisfactory result. The analysis of land use maps in the arid region revealed different patterns of use between 2008 and 2015. The results of this study may be useful for developing and implementing valuable management strategies for resource protection in the study area. These results show the potential for land use planning and development in arid regions using remote sensing and GIS technology

    Hydrogeology and Hydrogeochemistry of Saline Groundwater Seepage Zones in Wadi Bani Malik Basin, Jeddah, Saudi Arabia: Impacts on Soil and Water Resources

    No full text
    The water seepage zone affects dryland salinity, soil sodicity, land degradation, waterlogging, and rainfall pollution. The priority in terms of the remediation measures was determining the cause of the seepages. Nine water and six soil samples were collected from the Al Tayseer area of the Wadi Bani Malik, Jeddah, Saudi Arabia (SA). The water samples were analyzed for major and toxic metals. For the soil samples, granulometric analysis and infiltration rate analysis were performed. The total dissolved solids (TDS) in water seepages ranged from 1880 to 54,499, whereas boron (B) and iron (Fe) values ranged from 1.9 to 38 mg/L and 0.02 and 0.47 mg/L, respectively. These concentrations were the same for the aquifer in Lake Al Misk, confirming that groundwater infiltration from the lake area was the main reason for the water seepage. The concentrations of silica (Si), aluminum (Al), cobalt (Co), nickel (Ni), zinc (Zn), arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), and lead (Pb) were low, indicating that there was no contamination. The nitrate (NO32−) value ranged from 2.2 to 35 mg/L, indicating agricultural wastewater contribution. According to the granulometric examination, most sediment was sand, followed by gravel, with few fine-grain particles. The infiltration rate ranged from 85 to 864 cm/d, indicating significant leakage. The percentage of ferrugination, ferromagnesian, OH-bearing, and carbonate (CO₃2−) minerals is determined by the 4/2, 5/6, and 6/7 band ratios

    Physicochemical Parameters of Water and Its Implications on Avifauna and Habitat Quality

    No full text
    Wetland ecosystems are essential for maintaining biological diversity and are significant elements of the global landscape. However, the biodiversity of wetlands has been significantly reduced by more than 50% worldwide due to the rapid expansion of urban areas and other human activities. The aforementioned factors have resulted in drastic antagonistic effects on species composition, particularly aquatic avifauna. The decline in wetland avifauna, which can be attributed to changes in water quality that impact aquatic habitats, is a major concern. In this study, we evaluated the impact of physicochemical parameters on aquatic avifauna in India’s first Conservation Reserve, a Ramsar site and an Important Bird Area. Water samples were collected on a monthly basis across nine different sites and various parameters, such as temperature, electrical conductivity, pH, biological oxygen demand, dissolved oxygen, total dissolved solids and salinity, were analyzed for pre-monsoon and post-monsoon seasons, while point count surveys were conducted to assess species richness and the density of waterbirds. Our findings show a positive correlation of species density with water temperature (r = 0.57), total dissolved solids (r = 0.56) and dissolved oxygen (r = 0.6) for pre-monsoon season and a negative correlation for dissolved oxygen (r = −0.62) and biological oxygen demand (r = −0.69) for post-monsoon season. We suggest that a synergistic effect of pH, salinity, biological oxygen demand and total dissolved solids may affect aquatic bird populations in Asan Conservation Reserve. Poor water quality was observed in a few sampling sites, which may negatively affect the number and density of waterbirds present. The findings of this study emphasize the importance of water quality in wetland conservation, particularly for aquatic avifauna

    Forecasting of SPI and Meteorological Drought Based on the Artificial Neural Network and M5P Model Tree

    No full text
    Climate change has caused droughts to increase in frequency and severity worldwide, which has attracted scientists to create drought prediction models to mitigate the impacts of droughts. One of the most important challenges in addressing droughts is developing accurate models to predict their discrete characteristics, i.e., occurrence, duration, and severity. The current research examined the performance of several different machine learning models, including Artificial Neural Network (ANN) and M5P Tree in forecasting the most widely used drought measure, the Standardized Precipitation Index (SPI), at both discrete time scales (SPI 3, SPI 6). The drought model was developed utilizing rainfall data from two stations in India (i.e., Angangaon and Dahalewadi) for 2000–2019, wherein the first 14 years are employed for model training, while the remaining six years are employed for model validation. The subset regression analysis was performed on 12 different input combinations to choose the best input combination for SPI 3 and SPI 6. The sensitivity analysis was carried out on the given best input combination to find the most effective parameter for forecasting. The performance of all the developed models for ANN (4, 5), ANN (5, 6), ANN (6, 7), and M5P models was assessed through the different statistical indicators, namely, MAE, RMSE, RAE, RRSE, and r. The results revealed that SPI (t-1) is the most sensitive parameters with highest values of β = 0.916, 1.017, respectively, for SPI-3 and SPI-6 prediction at both stations on the best input combinations i.e., combination 7 (SPI-1/SPI-3/SPI-4/SPI-5/SPI-8/SPI-9/SPI-11) and combination 4 (SPI-1/SPI-2/SPI-6/SPI-7) based on the higher values of R2 and Adjusted R2 while the lowest values of MSE values. It is clear from the performance of models that the M5P model has higher r values and lesser RMSE values as compared to ANN (4, 5), ANN (5, 6), and ANN (6, 7) models. Therefore, the M5P model was superior to other developed models at both stations.Validerad;2022;Nivå 2;2022-11-15 (hanlid)</p
    corecore