643 research outputs found

    Densification and preservation of ceramic nanocrystalline character by spark plasma sintering

    Get PDF
    Spark plasma sintering is a hot pressing technique where rapid heating by dc electric pulses is used simultaneously with applied pressure. Thus, spark plasma sintering is highly suitable for rapid densification of ceramic nanoparticles and preservation of the final nanostructure. A considerable portion of the shrinkage during densification of the green compact of nanoparticles in the first and intermediate stages of sintering occurs during heating by particle rearrangement by sliding and rotation. Further densification to the final stage of sintering takes place by either plastic yield or diffusional processes. Full densification in the final stage of sintering is associated with diffusional processes only. Nanoparticle sliding and rotation during heating may also lead to grain coalescence, with much faster kinetics than normal grain growth at higher temperatures. Based on existing models for particle rearrangement and sliding, the contributions of these processes in conjunction with nanoparticle properties and process parameters were highlighted

    Factors Influencing the Development of Cyanide-resistant Respiration in Potato Tissue

    Full text link

    Effects of Red Light and Ethylene on Growth of Etiolated Lettuce Seedlings

    Full text link

    Psychologiczna analiza religijno\u15bci niesp\uf3jnej

    Get PDF
    Klasyfikacja tematyczna: Psychologia osobowo\u15bci; Psychologia religii; Antropologia spo\u142eczna; Socjologia religii; Filozofia religii; Filozofia warto\u15bc

    Contrasting Effects of Central Pacific and Eastern Pacific El Nino on Stratospheric Water Vapor

    Get PDF
    Targeted experiments with a comprehensive chemistry-climate model are used to demonstrate that seasonality and the location of the peak warming of sea surface temperatures dictate the response of stratospheric water vapor to El Nino. In spring, El Nino events in which sea surface temperature anomalies peak in the eastern Pacific lead to a warming at the tropopause above the warm pool region, and subsequently to more stratospheric water vapor (consistent with previous work). However, in fall and in early winter, and also during El Nino events in which the sea surface temperature anomaly is found mainly in the central Pacific, the response is qualitatively different: temperature changes in the warm pool region are nonuniform and less water vapor enters the stratosphere. The difference in water vapor in the lower stratosphere between the two variants of El Nino approaches 0.3 ppmv, while the difference between the winter and spring responses exceeds 0.5 ppmv

    Connections Between the TTL and Sea Surface Temperatures: Interannual Variability and Trends

    Get PDF
    Comprehensive chemistry climate models and satellite data are used to investigate the forcing of variability in the tropical lower stratosphere and upper troposphere. As this region is the origination region for air parcels which enter the stratosphere, it is important to understand variability in this region on timescales ranging from the seasonal to decadal. The warming trend in the tropical upper troposphere over the past 30 years is strongest near the Indo Pacific warm pool, while the warming trend in the western and central Pacific is much weaker. In the lower stratosphere, these trends are reversed: the historical cooling trend is strongest over the Indo Pacific warm pool and is weakest in the western and central Pacific. These zonal variations are stronger than the zonal mean response in boreal winter. Targeted experiments with a chemistry climate model are used to demonstrate that sea surface temperature trends are driving the zonal asymmetry in upper tropospheric and lower stratospheric tropical temperature trends. The anomalous circulation set up by the changing SSTs has led to zonal structure in the ozone and water vapor trends near the tropopause, and subsequently to less water vapor entering the stratosphere. Projected future sea surface temperatures appear to drive a temperature and water vapor response whose zonal structure is similar to the historical response. In the lower stratosphere, the changes in water vapor and temperature due to projected future sea surface temperatures is of similar strength to, though slightly weaker than, that due directly to projected future CO2, ozone, and methane. Finally, targeted experiments with a chemistry climate model are used to demonstrate that seasonality and the location of the peak warming of sea surface temperatures dictate the response of stratospheric water vapor to El Nino. In spring, El Nino events in which sea surface temperature anomalies peak in the eastern Pacific lead to a warming at the tropopause above the warm pool region, and subsequently to more stratospheric water vapor (consistent with previous work). However, in fall and in early winter, and also during El Nino events in which the sea surface temperature anomaly is found mainly in the central Pacific, the response is qualitatively different: temperature changes in the warm pool region are nonuniform and less water vapor enters the stratosphere. The difference in water vapor in the lower stratosphere between the two variants of El Nino approaches 0.3 ppmv, while the difference between the winter and spring responses exceeds 0.5 ppmv

    Panoramic optical and near-infrared SETI instrument: prototype design and testing

    Get PDF
    The Pulsed All-sky Near-infrared Optical Search for ExtraTerrestrial Intelligence (PANOSETI) is an instrument program that aims to search for fast transient signals (nano-second to seconds) of artificial or astrophysical origin. The PANOSETI instrument objective is to sample the entire observable sky during all observable time at optical and near-infrared wavelengths over 300 - 1650 nm1^1. The PANOSETI instrument is designed with a number of modular telescope units using Fresnel lenses (∼\sim0.5m) arranged on two geodesic domes in order to maximize sky coverage2^2. We present the prototype design and tests of these modular Fresnel telescope units. This consists of the design of mechanical components such as the lens mounting and module frame. One of the most important goals of the modules is to maintain the characteristics of the Fresnel lens under a variety of operating conditions. We discuss how we account for a range of operating temperatures, humidity, and module orientations in our design in order to minimize undesirable changes to our focal length or angular resolution.Comment: 12 pages, 8 figures, 1 tabl
    • …
    corecore