1,528 research outputs found

    Bound States of Conical Singularities in Graphene-Based Topological Insulators

    Full text link
    We investigate the electronic structure induced by wedge-disclinations (conical singularities) in a honeycomb lattice model realizing Chern numbers γ=±1\gamma=\pm 1. We establish a correspondence between the bound state of (i) an isolated Φ0/2\Phi_0/2-flux, (ii) an isolated pentagon (n=1)(n=1) or heptagon (n=−1)(n=-1) defect with an external flux of magnitude nγΦ0/4n\gamma \Phi_0/4 through the center and (iii) an isolated square or octagon defect without external flux, where Φ0=h/e\Phi_0=h/e is the flux quantum. Due to the above correspondence, the existence of isolated electronic states bound to the disclinations is robust against various perturbations. These results are also generalized to graphene-based time-reversal invariant topological insulators.Comment: 5+4 pages, 4+3 figures, revised introduction and Fig.

    Curvature Fields, Topology, and the Dynamics of Spatiotemporal Chaos

    Get PDF
    The curvature field is measured from tracer particle trajectories in a two-dimensional fluid flow that exhibits spatiotemporal chaos, and is used to extract the hyperbolic and elliptic points of the flow. These special points are pinned to the forcing when the driving is weak, but wander over the domain and interact in pairs at stronger driving, changing the local topology of the flow. Their behavior reveals a two-stage transition to spatiotemporal chaos: a gradual loss of spatial and temporal order followed by an abrupt onset of topological changes.Comment: 5 pages, 5 figure

    Crystallization in Glassy Suspensions of Hard Ellipsoids

    Get PDF
    We have carried out computer simulations of overcompressed suspensions of hard monodisperse ellipsoids and observed their crystallization dynamics. The system was compressed very rapidly in order to reach the regime of slow, glass-like dynamics. We find that, although particle dynamics become sub-diffusive and the intermediate scattering function clearly develops a shoulder, crystallization proceeds via the usual scenario: nucleation and growth for small supersaturations, spinodal decomposition for large supersaturations. In particular, we compared the mobility of the particles in the regions where crystallization set in with the mobility in the rest of the system. We did not find any signature in the dynamics of the melt that pointed towards the imminent crystallization events

    Hyperuniform long-range correlations are a signature of disordered jammed hard-particle packings

    Full text link
    We show that quasi-long-range (QLR) pair correlations that decay asymptotically with scaling r−(d+1)r^{-(d+1)} in dd-dimensional Euclidean space Rd\mathbb{R}^d, trademarks of certain quantum systems and cosmological structures, are a universal signature of maximally random jammed (MRJ) hard-particle packings. We introduce a novel hyperuniformity descriptor in MRJ packings by studying local-volume-fraction fluctuations and show that infinite-wavelength fluctuations vanish even for packings with size- and shape-distributions. Special void statistics induce hyperuniformity and QLR pair correlations.Comment: 10 pages, 3 figures; changes to figures and text based on review process; accepted for publication at Phys. Rev. Let

    Inducing topological order in a honeycomb lattice

    Get PDF
    We explore the possibility of inducing a topological insulator phase in a honeycomb lattice lacking spin-orbit interaction using a metallic (or Fermi gas) environment. The lattice and the metallic environment interact through a density-density interaction without particle tunneling, and integrating out the metallic environment produces a honeycomb sheet with in-plane oscillating long-ranged interactions. We find the ground state of the interacting system in a variational mean-field method and show that the Fermi wave vector, kF, of the metal determines which phase occurs in the honeycomb lattice sheet. This is analogous to the Ruderman-Kittel-Kasuya-Yosida (RKKY) mechanism in which the metal's kF determines the interaction profile as a function of the distance. Tuning kF and the interaction strength may lead to a variety of ordered phases, including a topological insulator and anomalous quantum-hall states with complex next-nearest-neighbor hopping, as in the Haldane and the Kane-Mele model. We estimate the required range of parameters needed for the topological state and find that the Fermi vector of the metallic gate should be of the order of 3Pi/8a (with a being the graphene lattice constant). The net coupling between the layers, which includes screening in the metal, should be of the order of the honeycomb lattice bandwidth. This configuration should be most easily realized in a cold-atoms setting with two interacting Fermionic species.Comment: 7 pages; 2 figures; Version 2 - added references; added an appendix about screenin

    Heat wave propagation in a nonlinear chain

    Full text link
    We investigate the propagation of temperature perturbations in an array of coupled nonlinear oscillators at finite temperature. We evaluate the response function at equilibrium and show how the memory effects affect the diffusion properties. A comparison with nonequilibrium simulations reveals that the telegraph equation provides a reliable interpretative paradigm for describing quantitatively the propagation of a heat pulse at the macroscopic level. The results could be of help in understanding and modeling energy transport in individual nanotubes.Comment: Revised version, 1 fig. adde

    Spinodal decomposition during the hadronization stage at RHIC?

    Full text link
    The expansion of strongly interacting matter formed in high-energy nuclear collisions drives the system through the region of phase coexistence. The present study examines the associated spinodal instability and finds that the degree of amplification may be sufficient to raise the prospect of using the spinodal pattern formation as a diagnostic tool for probing the hadronization phase transition.Comment: 4 pages, 4 eps figure

    Solitonic Phase in Manganites

    Full text link
    Whenever a symmetry in the ground state of a system is broken, topological defects will exist. These defects are essential for understanding phase transitions in low dimensional systems[1]. Excitingly in some unique condensed matter systems the defects are also the low energy electric charge excitations. This is the case of skyrmions in quantum Hall ferromagnets[2] and solitons in polymers[3]. Orbital order present in several transitions metal compounds[4-6] could give rise to topological defects. Here we argue that the topological defects in orbital ordered half doped manganites are orbital solitons. Surprisingly, these solitons carry a fractional charge of ±\pme/2, and whenever extra charge is added to the system an array of solitons is formed and an incommensurate solitonic phase occurs. The striking experimental asymmetry in the phase diagram as electrons or holes are added to half doped manganites[7-12], is explained by the energy difference between positive and negative charged solitons. Contrary to existent models that explain coexistence between phases in manganites as an extrinsic effect[13-14], the presence of inhomogeneities is naturally explained by the existence of solitonic phases. The occurrence and relevance of orbital solitons might be a general phenomena in strongly correlated systems.Comment: 10 pages, 5 figures include

    A Note on Charged Black Holes in AdS space and the Dual Gauge Theories

    Full text link
    We study the thermodynamics and the phase structures of Reissner-Nordstrom and Born-Infeld black holes in AdS space by constructing ``off-shell'' free energies using thermodynamic quantities derived directly from the action. We then use these results to propose ``off-shell'' effective potentials for the respective boundary gauge theories. The saddle points of the potentials describe all the equilibrium phases of the gauge theories.Comment: LaTeX, 21+1 pages, 7 figure
    • …
    corecore