53 research outputs found

    Using Expanded Natural Killer Cells as Therapy for Invasive Aspergillosis

    Get PDF
    Invasive aspergillosis (IA) is a major opportunistic fungal infection in patients with haematological malignancies. Morbidity and mortality rates are high despite anti-fungal treatment, as the compromised status of immune system prevents the host from responding optimally to conventional therapy. This raises the consideration for immunotherapy as an adjunctive treatment. In this study, we evaluated the utility of expanded human NK cells as treatment against Aspergillus fumigatus infection in vitro and in vivo. The NK cells were expanded and activated by K562 cells genetically modified to express 4-1BB ligand and membrane-bound interleukin-15 (K562-41BBL-mbIL-15) as feeders. The efficacy of these cells was investigated in A. fumigatus killing assays in vitro and as adoptive cellular therapy in vivo. The expanded NK cells possessed potent killing activity at low effector-to-target ratio of 2:1. Fungicidal activity was morphotypal-dependent and most efficacious against A. fumigatus conidia. Fungicidal activity was mediated by dectin-1 receptors on the expanded NK cells leading to augmented release of perforin, resulting in enhanced direct cytolysis. In an immunocompromised mice pulmonary aspergillosis model, we showed that NK cell treatment significantly reduced fungal burden, hence demonstrating the translational potential of expanded NK cells as adjunctive therapy against IA in immunocompromised patients

    Modelling lockdown and exit strategies for COVID-19 in Singapore.

    Get PDF
    BACKGROUND: With at least 94 countries undergoing or exiting lockdowns for contact suppression to control the COVID-19 outbreak, sustainable and public health-driven exit strategies are required. Here we explore the impact of lockdown and exit strategies in Singapore for immediate planning. METHODS: We use an agent-based model to examine the impacts of epidemic control over 480 days. A limited control baseline of case isolation and household member quarantining is used. We measure the impact of lockdown duration and start date on final infection attack sizes. We then apply a 3-month gradual exit strategy, immediately re-opening schools and easing workplace distancing measures, and compare this to long-term social distancing measures. FINDINGS: At baseline, we estimated 815 400 total infections (21.6% of the population). Early lockdown at 5 weeks with no exit strategy averted 18 500 (2.27% of baseline averted), 21 300 (2.61%) and 22 400 (2.75%) infections for 6, 8 and 9-week lockdown durations. Using the exit strategy averted a corresponding 114 700, 121 700 and 126 000 total cases, representing 12.07-13.06% of the total epidemic size under baseline. This diminishes to 9 900-11 300 for a late 8-week start time. Long-term social distancing at 6 and 8-week durations are viable but less effective. INTERPRETATION: Gradual release exit strategies are critical to maintain epidemic suppression under a new normal. We present final infection attack sizes assuming the ongoing importation of cases, which require preparation for a potential second epidemic wave due to ongoing epidemics elsewhere. FUNDING: Singapore Ministry of Health, Singapore Population Health Improvement Centre

    Socializing One Health: an innovative strategy to investigate social and behavioral risks of emerging viral threats

    Get PDF
    In an effort to strengthen global capacity to prevent, detect, and control infectious diseases in animals and people, the United States Agency for International Development’s (USAID) Emerging Pandemic Threats (EPT) PREDICT project funded development of regional, national, and local One Health capacities for early disease detection, rapid response, disease control, and risk reduction. From the outset, the EPT approach was inclusive of social science research methods designed to understand the contexts and behaviors of communities living and working at human-animal-environment interfaces considered high-risk for virus emergence. Using qualitative and quantitative approaches, PREDICT behavioral research aimed to identify and assess a range of socio-cultural behaviors that could be influential in zoonotic disease emergence, amplification, and transmission. This broad approach to behavioral risk characterization enabled us to identify and characterize human activities that could be linked to the transmission dynamics of new and emerging viruses. This paper provides a discussion of implementation of a social science approach within a zoonotic surveillance framework. We conducted in-depth ethnographic interviews and focus groups to better understand the individual- and community-level knowledge, attitudes, and practices that potentially put participants at risk for zoonotic disease transmission from the animals they live and work with, across 6 interface domains. When we asked highly-exposed individuals (ie. bushmeat hunters, wildlife or guano farmers) about the risk they perceived in their occupational activities, most did not perceive it to be risky, whether because it was normalized by years (or generations) of doing such an activity, or due to lack of information about potential risks. Integrating the social sciences allows investigations of the specific human activities that are hypothesized to drive disease emergence, amplification, and transmission, in order to better substantiate behavioral disease drivers, along with the social dimensions of infection and transmission dynamics. Understanding these dynamics is critical to achieving health security--the protection from threats to health-- which requires investments in both collective and individual health security. Involving behavioral sciences into zoonotic disease surveillance allowed us to push toward fuller community integration and engagement and toward dialogue and implementation of recommendations for disease prevention and improved health security

    Optimizing Outcomes in Immunocompromised Hosts: Understanding the Role of Immunotherapy in Invasive Fungal Diseases

    No full text
    A major global concern is the emergence and spread of systemic life –threatening fungal infections in critically ill patients. The increase in invasive fungal infections, caused most commonly by Candida and Aspergillus species, occurs in patients with impaired defenses due to a number of reasons such as underlying disease, the use of chemotherapeutic and immunosuppressive agents, broad-spectrum antibiotics, prosthetic devices and grafts, burns, neutropenia and HIV infection. The high morbidity and mortality associated with these infections is compounded by the limited therapeutic options and the emergence of drug resistant fungi. Hence, creative approaches to bridge the significant gap in antifungal drug development needs to be explored. Here, we review the potential anti-fungal targets for patient-centered therapies and immune-enhancing strategies for the prevention and treatment of invasive fungal diseases

    The Fungal Mycobiome and Its Interaction with Gut Bacteria in the Host

    No full text
    The advent of sequencing technology has endowed us with the capacity to study microbes constituting the human commensal community that were previously non-culturable. Much of the initial works have concentrated on the bacterial flora constituting the gut microbiome, since specimens are readily accessible in health and disease. Less, however, is understood of the “silent population”—the fungal species, also known as the mycobiome. Living in symbiosis with bacteria as commensals in our body, it is perceivable that the mycobiome exerts an inadvertent influence on the microbiome. We review here the recent knowledge gained from study of the interaction between the mycobiome and microbiome in health and disease susceptibility, immunity, and consequences from antimicrobial treatment

    Immunomodulation as Therapy for Fungal Infection: Are We Closer?

    No full text
    10.3389/fmicb.2018.01612Frontiers in Microbiology9JUL161

    Melioidosis, Singapore, 2003–2014

    No full text
    In contrast with northern Australia and Thailand, in Singapore the incidence of melioidosis and co-incidence of melioidosis and pneumonia have declined. Burkholderia pseudomallei deep abscesses increased 20.4% during 2003–2014. These trends could not be explained by the environmental and climatic factors conventionally ascribed to melioidosis
    corecore