41 research outputs found
Taurine chloramine protects RAW 264.7 macrophages against hydrogen peroxide-induced apoptosis by increasing antioxidants
Taurine chloramine is the major chloramine generated in activated neutrophils via the reaction between the overproduced hypochlorous acid and the stored taurine. Taurine chloramine has anti-inflammatory and cytoprotective effects in inflamed tissues by inhibiting the production of inflammatory mediators. Taurine chloramine increases heme oxygenase activity and also protects against hydrogen peroxide (H2O2)-derived necrosis in macrophages. In this study, we examined further whether taurine chloramine could protect RAW 264.7 macrophages from apoptosis caused by H2O2. Macrophages treated with 0.4Â mM H2O2 underwent apoptosis without showing immediate signs of necrosis, and the cells pretreated with taurine chloramine were protected from the H2O2-derived apoptosis. Taurine chloramine increased heme oxygenase-1 expression and heme oxygenase activity. The taurine chloramine-derived upregulation of heme oxygenase-1 expression was blocked by inhibition of ERK phosphorylation. Taurine chloramine decreased cellular glutathione (GSH) levels initially, but the GSH level increased above the control level by 10Â h. Taurine chloramine also increased catalase expression and protected macrophages from the apoptotic effect of H2O2. Combined, these results indicate that the taurine chloramine, produced and released endogenously by the activated neutrophils, can protect the macrophages in inflamed tissues from the H2O2-derived apoptosis not only by increasing the expression of cytoprotective enzymes like heme oxygenase-1 and catalase, but also by increasing the intracellular antioxidant GSH level
Recommended from our members
Rac GTPases in Human Diseases
Rho GTPases are members of the Ras superfamily of GTPases that regulate a wide variety of cellular functions. While Rho GTPase pathways have been implicated in various pathological conditions in humans, to date coding mutations in only the hematopoietic specific GTPase, RAC2, have been found to cause a human disease, a severe phagocytic immunodeficiency characterized by life-threatening infections in infancy. Interestingly, the phenotype was predicted by a mouse knock-out of RAC2 and resembles leukocyte adhesion deficiency (LAD). Here we review Rho GTPases with a specific focus on Rac GTPases. In particular, we discuss a new understanding of the unique and overlapping roles of Rac2 in blood cells that has developed since the generation of mice deficient in Rac1, Rac2 and Rac3 proteins. We propose that Rac2 mutations leading to disease be termed LAD type IV
Vav1 inhibits RANKL-induced osteoclast differentiation and bone resorption
Vav1 is a Rho/Rac guanine nucleotide exchange factor primarily expressed in hematopoietic cells. In this study, we investigated the potential role of Vav1 in osteoclast (OC) differentiation by comparing the ability of bone marrow mononuclear cells (BMMCs) obtained from Vav1-deficient (Vav1−/−) and wild-type (WT) mice to differentiate into mature OCs upon stimulation with macrophage colony stimulating factor and receptor activator of nuclear kappa B ligand in vitro. Our results suggested that Vav1 deficiency promoted the differentiation of BMMCs into OCs, as indicated by the increased expression of tartrate-resistant acid phosphatase, cathepsin K, and calcitonin receptor. Therefore, Vav1 may play a negative role in OC differentiation. This hypothesis was supported by the observation of more OCs in the femurs of Vav1−/− mice than in WT mice. Furthermore, the bone status of Vav1−/− mice was analyzed in situ and the femurs of Vav1−/− mice appeared abnormal, with poor bone density and fewer number of trabeculae. In addition, Vav1-deficient OCs showed stronger adhesion to vitronectin, an αvβ3 integrin ligand important in bone resorption. Thus, Vav1 may inhibit OC differentiation and protect against bone resorption
Recommended from our members
Guanine Nucleotide Exchange Factor Vav1 Regulates Perivascular Homing and Bone Marrow Retention of Hematopoietic Stem and Progenitor Cells
Engraftment and maintenance of hematopoietic stem and progenitor cells (HSPC) depend on their ability to respond to extracellular signals from the bone marrow microenvironment, but the critical intracellular pathways integrating these signals remain poorly understood. Furthermore, recent studies provide contradictory evidence of the roles of vascular versus osteoblastic niche components in HSPC function. To address these questions and to dissect the complex upstream regulation of Rac GTPase activity in HSPC, we investigated the role of the hematopoietic-specific guanine nucleotide exchange factor Vav1 in HSPC localization and engraftment. Using intravital microscopy assays, we demonstrated that transplanted HSPC showed impaired early localization near perivascular mesenchymal stem cells; only 6.25% of HSPC versus 45.8% of wild-type HSPC were located less than 30 μm from a cell. Abnormal perivascular localization correlated with decreased retention of HSPC in the bone marrow (44–60% reduction at 48 h posttransplant, compared with wild-type) and a very significant defect in short- and long-term engraftment in competitive and noncompetitive repopulation assays (<1.5% chimerism of cells vs. 53–63% for wild-type cells). The engraftment defect of HSPC was not related to alterations in proliferation, survival, or integrin-mediated adhesion. However, HSPC showed impaired responses to , including reduced in vitro migration in time-lapse microscopy assays, decreased circadian and pharmacologically induced mobilization in vivo, and dysregulated Rac/Cdc42 activation. These data suggest that Vav1 activity is required specifically for -dependent perivascular homing of HSPC and suggest a critical role for this localization in retention and subsequent engraftment
Taurine chloramine differentially inhibits matrix metalloproteinase 1 and 13 synthesis in interleukin-1β stimulated fibroblast-like synoviocytes
It has been suggested that taurine chloramine (TauCl) plays an important role in the downregulation of proinflammatory mediators. However, little is known about its effect on the expression of matrix metalloproteinases (MMPs). In this study, we investigated the effects of TauCl on synovial expression of MMPs. The effects of TauCl on MMP expression in IL-1β stimulated fibroblast-like synoviocytes (FLSs) were studied using the following techniques. Real-time PCR and semi-quantitative PCR were employed to analyze the mRNA expression of MMPs. ELISA was used to determine protein levels of MMPs. Western blot analyses were performed to analyze the mitogen-activated protein kinase and inhibitor of nuclear factor-κB (IκB) kinase signalling pathways. Finally, electrophoretic mobility shift assay and immunohistochemistry were used to assess localization of transcription factors. IL-1β increased the transcriptional and translational levels of MMP-1 and MMP-13 in rheumatoid arthritis FLSs, whereas the levels of MMP-2 and MMP-9 were unaffected. TauCl at a concentration of 400 to 600 μmol/l greatly inhibited the transcriptional and translational expression of MMP-13, but the expression of MMP-1 was significantly inhibited at 800 μmol/l. At a concentration of 600 μmol/l, TauCl did not significantly inhibit phosphorylation of mitogen-activated protein kinase or IκB degradation in IL-1β stimulated rheumatoid arthritis FLSs. The degradation of IκB was significantly inhibited at a TauCl concentration of 800 μmol/l. The inhibitory effect of TauCl on IκB degradation was confirmed by electrophoretic mobility shift assay and immunochemical staining for localization of nuclear factor-κB. TauCl differentially inhibits the expression of MMP-1 and MMP-13, and inhibits expression of MMP-1 primarily through the inhibition of IκB degradation, whereas it inhibits expression of MMP-13 through signalling pathways other than the IκB pathway
Synthesis and Characterization of Polycarbonate Copolymers Containing Benzoyl Groups on the Side Chain for Scratch Resistance
The purpose of this study was to enhance the scratch resistance of polycarbonate copolymer by using 3,3′-dibenzoyl-4,4′-dihydroxybiphenyl (DBHP) monomer, containing benzoyl moieties on the ortho positions. DBHP monomer was synthesized from 4,4′-dihydroxybiphenyl and benzoyl chloride, followed by the Friedel-Craft rearrangement reaction with AlCl3. The polymerizations were conducted following the low-temperature procedure, which is carried out in methylene chloride by using triphosgene, triethylamine, bisphenol-A, and DBHP. The chemical structures of the polycarbonate copolymers were confirmed by 1H-NMR. The thermal properties of copolymers were investigated by thermogravimetric analysis and differential scanning calorimetry, and also surface morphologies were assessed by atomic force microscopy. The scratch resistance of homopolymer film (100 μm) changed from 6B to 1B, and the contact angle of a sessile water drop onto the homopolymer film also increased
Carbon Monoxide Regulates Macrophage Differentiation and Polarization toward the M2 Phenotype through Upregulation of Heme Oxygenase 1
Carbon monoxide (CO) is generated by heme oxygenase (HO), and HO-1 is highly induced in monocytes and macrophages upon stimulation. Monocytes differentiate into macrophages, including pro-inflammatory (M1) and anti-inflammatory (M2) cells, in response to environmental signals. The present study investigated whether CO modulates macrophage differentiation and polarization, by applying the CO-releasing molecule-3 (CORM-3). Results showed that murine bone marrow cells are differentiated into macrophages by CORM-3 in the presence of macrophage colony-stimulating factor. CORM-3 increases expressions of macrophage markers, including F4/80 and CD11b, and alters the cell morphology into elongated spindle-shaped cells, which is a typical morphology of M2 cells. CORM-3 upregulates the expressions of genes and molecules involved in M2 polarization and M2 phenotype markers, such as STAT6, PPARγ, Ym1, Fizz1, arginase-1, and IL-10. However, exposure to CORM-3 inhibits the iNOS expression, suggesting that CO enhances macrophage differentiation and polarization toward M2. Increased HO-1 expression is observed in differentiated macrophages, and CORM-3 further increases this expression. Hemin, an HO-1 inducer, results in increased macrophage differentiation, whereas the HO-1 inhibitor zinc protoporphyrin IX inhibits differentiation. In addition, CORM-3 increases the proportion of macrophages in peritoneal exudate cells and enhances the expression of HO-1 and arginase-1 but inhibits iNOS. Taken together, these results suggest that the abundantly produced CO in activated macrophages enhances proliferation, differentiation, and polarization toward M2. It will probably help clear apoptotic cells, resolve inflammation, and promote wound healing and tissue remodeling
Role of CARD9 in Cell- and Organ-Specific Immune Responses in Various Infections
The caspase recruitment domain-containing protein 9 (CARD9) is an intracellular adaptor protein that is abundantly expressed in cells of the myeloid lineage, such as neutrophils, macrophages, and dendritic cells. CARD9 plays a critical role in host immunity against infections caused by fungi, bacteria, and viruses. A CARD9 deficiency impairs the production of inflammatory cytokines and chemokines as well as migration and infiltration, thereby increasing susceptibility to infections. However, CARD9 signaling varies depending on the pathogen causing the infection. Furthermore, different studies have reported altered CARD9-mediated signaling even with the same pathogen. Therefore, this review focuses on and elucidates the current literature on varied CARD9 signaling in response to various infectious stimuli in humans and experimental mice models