4,802 research outputs found

    Predictability of reset switching voltages in unipolar resistance switching

    Full text link
    In unipolar resistance switching of NiO capacitors, Joule heating in the conducting channels should cause a strong nonlinearity in the low resistance state current-voltage (I-V) curves. Due to the percolating nature of the conducting channels, the reset current IR, can be scaled to the nonlinear coefficient Bo of the I-V curves. This scaling relationship can be used to predict reset voltages, independent of NiO capacitor size; it can also be applied to TiO2 and FeOy capacitors. Using this relation, we developed an error correction scheme to provide a clear window for separating reset and set voltages in memory operations

    Inclusive angular distribution of alpha and Li fragments produced in the Fe-C and Fe-Pb collisions at 1.88 GeV/u

    Get PDF
    The LS (laboratory system) emission angles theta for 2188 and 298 Li fragments, produced inclusively in relativistic Fe-C and Fe-Pb collisions, have been measured in reference to incident Fe-ion beam tracks nearby in nuclear emulsion. An empirical differential frequency formula, dN(cot theta) = exp (a + b cot theta)d(cot theta) is obtained with the constant b approx. = -0.026 at 1.88 GeV/u, which seems to be independent on the kinds of target nucleus as well as on the kinds of projectile fragments

    Magnetic and humidity sensing properties of nanostructured Cu[x]Co[1-x]Fe2O4 synthesized by auto combustion technique

    Full text link
    Magnetic nanomaterials (23-43 nm) of Cux_xCo1−x_{1-x}Fe2_2O4_4\ (x = 0.0, 0.5 and 1.0) were synthesized by auto combustion method. The crystallite sizes of these materials were calculated from X-ray diffraction peaks. The band observed in Fourier transform infrared spectrum near 575 cm−1^{-1} in these samples confirm the presence of ferrite phase. Conductivity measurement shows the thermal hysteresis and demonstrates the knee points at 475o^oC, 525o^oC and 500o^oC for copper ferrite, cobalt ferrite and copper-cobalt mixed ferrite respectively. The hystersis M-H loops for these materials were traced using the Vibrating Sample Magnetometer (VSM) and indicate a significant increase in the saturation magnetization (Ms_s) and remanence (Mr_r) due to the substitution of Cu2+^{2+} ions in cobalt ferrite, while the intrinsic coercivity (Hc_c) was decreasing. Among these ferrites, copper ferrite exhibits highest sensitivity for humidity.Comment: 12 pages, 7 figure

    The eto1, eto2, and eto3 Mutations and Cytokinin Treatment Increase Ethylene Biosynthesis in Arabidopsis by Increasing the Stability of ACS Protein

    Get PDF
    The Arabidopsis ethylene-overproducing mutants eto1, eto2, and eto3 have been suggested to affect the post-transcriptional regulation of 1-aminocyclopropane-1-carboxylic acid synthase (ACS). Here, we present the positional cloning of the gene corresponding to the dominant eto3 mutation and show that the eto3 phenotype is the result of a missense mutation within the C-terminal domain of ACS9, which encodes one isoform of the Arabidopsis ACS gene family. This mutation is analogous to the dominant eto2 mutation that affects the C-terminal domain of the highly similar ACS5. Analysis of purified recombinant ACS5 and epitope-tagged ACS5 in transgenic Arabidopsis revealed that eto2 does not increase the specific activity of the enzyme either in vitro or in vivo; rather, it increases the half-life of the protein. In a similar manner, cytokinin treatment increased the stability of ACS5 by a mechanism that is at least partially independent of the eto2 mutation. The eto1 mutation was found to act by increasing the function of ACS5 by stabilizing this protein. These results suggest that an important mechanism by which ethylene biosynthesis is controlled is the regulation of the stability of ACS, mediated at least in part through the C-terminal domain
    • …
    corecore