3,513 research outputs found

    Mechanisms of transmurally varying myocyte electromechanics in an integrated computational model

    Get PDF
    The mechanical properties of myocardium vary across the transmural aspect of the left ventricular wall. Some of these functional heterogeneities may be related to differences in excitation–contraction coupling characteristics that have been observed in cells isolated from the epicardial, mid-myocardial and endocardial regions of the left ventricle of many species, including canine. Integrative models of coupled myocyte electromechanics are reviewed and used here to investigate sources of heterogeneous electromechanical behaviour in these cells. The simulations (i) illustrate a previously unrecognized role of the transient outward potassium current in mechanical function and (ii) suggest that there may also exist additional heterogeneities affecting crossbridge cycling rates in cells from different transmural regions

    Correlated metallic state of vanadium dioxide

    Full text link
    The metal-insulator transition and unconventional metallic transport in vanadium dioxide (VO2_2) are investigated with a combination of spectroscopic ellipsometry and reflectance measurements. The data indicates that electronic correlations, not electron-phonon interactions, govern charge dynamics in the metallic state of VO2_2. This study focuses on the frequency and temperature dependence of the conductivity in the regime of extremely short mean free path violating the Ioffe-Regel-Mott limit of metallic transport. The standard quasiparticle picture of charge conduction is found to be untenable in metallic VO2_2.Comment: 5 pages, 3 figure

    Fast and Accurate Fourier Series Solutions to Gravitational Lensing by A General Family of Two Power-Law Mass Distributions

    Full text link
    Fourier series solutions to the deflection and magnification by a family of three-dimensional cusped two power-law ellipsoidal mass distributions are presented. The cusped two power-law ellipsoidal mass distributions are characterized by inner and outer power-law radial indices and a break (or, transition) radius. The model family includes mass models mimicking Jaffe, Hernquist, and η\eta models and dark matter halo profiles from numerical simulations. The Fourier series solutions for the cusped two power-law mass distributions are relatively simple, and allow a very fast calculation even for a chosen small fractional calculational error (e.g. 10510^{-5}). These results will be particularly useful for studying lensed systems which provide a number of accurate lensing constraints and for systematic analyses of large numbers of lenses. Subroutines employing these results for the two power-law model and the results by Chae, Khersonsky, & Turnshek for the generalized single power-law mass model are made publicly available.Comment: 20 pages (preprint style), ApJ, in press. Also, available at http://www.jb.man.ac.uk/~cha

    Electronic structure studies of Fe- ZnO nanorods by x-ray absorption fine structure

    Full text link
    We report the electronic structure studies of well characterized polycrystalline Zn_{1-x}Fe_xO (x = 0.0, 0.01, 0.03, and 0.05) nanorods synthesized by a co-precipitation method through x-ray absorption fine structure (XAFS). X-ray diffraction (XRD) reveals that Fe doped ZnO crystallizes in a single phase wurtzite structure without any secondary phase. From the XRD pattern, it is observed that peak positions shift towards lower 2\theta value with Fe doping. The change in the peak positions with increase in Fe contents clearly indicates that Fe ions are replacing Zn ions in the ZnO matrix. Linear combination fittings (LCF) at Fe K-edge demonstrate that Fe is in mixed valent state (Fe3+/Fe2+) with a ratio of ~ 7:3 (Fe3+:Fe2+). XAFS data is successfully fitted to wurtzite structure using IFEFFIT and Artemis. The results indicate that Fe substitutes Zn site in the ZnO matrix in tetrahedral symmetry.Comment: 7 pages, 5 figures, 2 tables, regular articl

    A compact and reconfigurable silicon nitride time-bin entanglement circuit

    Get PDF
    Photonic chip based time-bin entanglement has attracted significant attention because of its potential for quantum communication and computation. Useful time-bin entanglement systems must be able to generate, manipulate and analyze entangled photons on a photonic chip for stable, scalable and reconfigurable operation. Here we report the first time-bin entanglement photonic chip that integrates time-bin generation, wavelength demultiplexing and entanglement analysis. A two-photon interference fringe with an 88.4% visibility is measured (without subtracting any noise), indicating the high performance of the chip. Our approach, based on a silicon nitride photonic circuit, which combines the low-loss characteristic of silica and tight integration features of silicon, paves the way for scalable real-world quantum information processors.Comment: 4 pages, 5 figure

    Asymmetry in fatigue and recovery in ferroelectric Pb(Zr,Ti)O3 thin-film capacitors

    Full text link
    We investigate the fatigue and refreshment by dc-electrical field of the electrical properties of Pt/Pb(Ti,Zr)O3_3/Pt ferroelectric capacitors. We find an asymmetry in the refreshment, that is, the fatigued state can be refreshed by application of negative high dc-voltage to the top electrode, but no refreshment is measured by positive dc-voltage application. We also find that the fatigue can be prevented by driving the capacitor asymmetrically.Comment: 4 pages, 5 figure

    Electrodynamics of the vanadium oxides VO2 and V2O3

    Full text link
    The optical/infrared properties of films of vanadium dioxide (VO2) and vanadium sesquioxide (V2O3) have been investigated via ellipsometry and near-normal incidence reflectance measurements from far infrared to ultraviolet frequencies. Significant changes occur in the optical conductivity of both VO2 and V2O3 across the metal-insulator transitions at least up to (and possibly beyond) 6 eV. We argue that such changes in optical conductivity and electronic spectral weight over a broad frequency range is evidence of the important role of electronic correlations to the metal-insulator transitions in both of these vanadium oxides. We observe a sharp optical transition with possible final state (exciton) effects in the insulating phase of VO2. This sharp optical transition occurs between narrow a1g bands that arise from the quasi-one-dimensional chains of vanadium dimers. Electronic correlations in the metallic phases of both VO2 and V2O3 lead to reduction of the kinetic energy of the charge carriers compared to band theory values, with paramagnetic metallic V2O3 showing evidence of stronger correlations compared to rutile metallic VO2.Comment: 11 pages, 7 figure

    B0850+054: a new gravitational lens system from CLASS

    Get PDF
    We report the discovery of a new gravitational lens system from the CLASS survey. Radio observations with the VLA, the WSRT and MERLIN show that the radio source B0850+054 is comprised of two compact components with identical spectra, a separation of 0.7 arcsec and a flux density ratio of 6:1. VLBA observations at 5 GHz reveal structures that are consistent with the gravitational lens hypothesis. The brighter of the two images is resolved into a linear string of at least six sub-components whilst the weaker image is radially stretched towards the lens galaxy. UKIRT K-band imaging detects an 18.7 mag extended object, but the resolution of the observations is not sufficient to resolve the lensed images and the lens galaxy. Mass modelling has not been possible with the present data and the acquisition of high-resolution optical data is a priority for this system.Comment: 5 pages, 4 figures, accepted for publication in MNRA
    corecore