476 research outputs found
Effects of pre-existing hydrogen to stress triaxiality and damage evolution on ultra high strength steel
Please click Additional Files below to see the full abstrac
Diffusion Mechanism of Lithium Ion through Basal Plane of Layered Graphene
International audienceCoexistence of both edge plane and basal plane in graphite often hinders the understanding of lithium ion diļ¬usion mechanism. In this report, two types of graphene samples were prepared by chemical vapor deposition (CVD): (i) well-deļ¬ned basal plane graphene grown on Cu foil and (ii) edge plane-enriched graphene layers grown on Ni ļ¬lm. Electrochemical performance of the graphene electrode can be split into two regimes depending on the number of graphene layers: (i) the corrosion-dominant regime and (ii) the lithiation-dominant regime. Li ion diļ¬usion perpendicular to the basal plane of graphene is facilitated by defects, whereas diļ¬usion parallel to the plane is limited by the steric hindrance that originates from aggregated Li ions adsorbed on the abundant defect sites. The critical layer thickness (lc) to eļ¬ectively prohibit substrate reaction using CVD-grown graphene layers was predicted to be ā¼6 layers, independent of defect population. Our density functional theory calculations demonstrate that divacancies and higher order defects have reasonable diļ¬usion barrier heights allowing lithium diļ¬usion through the basal plane but neither monovacancies nor Stone-Wales defect
Impact of the Metabolic Syndrome on the Clinical Outcome of Patients with Acute ST-Elevation Myocardial Infarction
We sought to determine the prevalence of metabolic syndrome (MS) in patients with acute myocardial infarction and its effect on clinical outcomes. Employing data from the Korea Acute Myocardial Infarction Registry, a total of 1,990 patients suffered from acute ST-elevation myocardial infarction (STEMI) between November 2005 and December 2006 were categorized according to the National Cholesterol Education Program-Adult Treatment Panel III criteria of MS. Primary study outcomes included major adverse cardiac events (MACE) during one-year follow-up. Patients were grouped based on existence of MS: group I: MS (n=1,182, 777 men, 62.8Ā±12.3 yr); group II: Non-MS (n=808, 675 men, 64.2Ā±13.1 yr). Group I showed lower left ventricular ejection fraction (LVEF) (P=0.005). There were no differences between two groups in the coronary angiographic findings except for multivessel involvement (P=0.01). The incidence of in-hospital death was higher in group I than in group II (P=0.047), but the rates of composite MACE during one-year clinical follow-up showed no significant differences. Multivariate analysis showed that low LVEF, old age, MS, low high density lipoprotein cholesterol and multivessel involvement were associated with high in-hospital death rate. In conclusion, MS is an important predictor for in-hospital death in patients with STEMI
A highly active and durable lanthanum strontium cobalt ferrite cathode for Intermediate-Temperature solid Oxide fuel cel
Solid oxide fuel cells (SOFCs) are promising techniques for high energy efficiency, fuel flexibility, and low pollutant emissions. For commercialization of SOFCs, it is required to decrease the operating temperature. At this intermediate temperature region, the cathodic polarization resistance significant due to the thermally activated oxygen reduction reaction (ORR). To compensate this, highly active cathode materials have been considered and lanthanum strontium cobalt ferrite (LSCF6428, La0.6Sr0.4Co0.2Fe0.8O3-Ī“) has been attracted as a cathode material for SOFCs because of its high mixed electronic and ionic conducting (MIEC) nature. However, one of the major concerns of LSCF6428 is the degradation during the long-term operation. Currently, Sr segregation has been reported as one of the major reasons for the LSCF degradation. In this study, we investigated LSCF2882 (La0.2Sr0.8Co0.8Fe0.2O3-Ī“) and compared with LSCF6428 as a SOFC cathode. X-ray diffraction (XRD) and Rietveld refinement were applied to analyze phase structures. By electrical conductivity relaxation (ECR) technique, Oxygen surface exchange coefficients (kchem) and chemical diffusion coefficients (Dchem) of LSCF2882 were evaluated and we observed enhancements compare to LSCF6428. For interpretation of enhanced oxygen transport kinetics, we tried to visualize the interstitial oxygen conduction pathways and the bond valence sum (BVS) mapping method was utilized by Valence program. BVS mapping results show clearly demonstrating the 3D network of the interstitial pathways at 600oC in LSCF2882. Electrochemical performances were investigated by EIS (Electrochemical Impedance Spectroscopy) and single cell performance was also evaluated. In addition, long-term stability test was performed for over 500 hours. LSCF2882 showed better performances and it exhibited no degradation during the stability test.
Please click Additional Files below to see the full abstract
The 5'-end transitional CpGs between the CpG islands and retroelements are hypomethylated in association with loss of heterozygosity in gastric cancers
BACKGROUND: A loss of heterozygosity (LOH) represents a unilateral chromosomal loss that reduces the dose of highly repetitive Alu, L1, and LTR retroelements. The aim of this study was to determine if the LOH events can affect the spread of retroelement methylation in the 5'-end transitional area between the CpG islands and their nearest retroelements. METHODS: The 5'-transitional area of all human genes (22,297) was measured according to the nearest retroelements to the transcription start sites. For 50 gastric cancer specimens, the level of LOH events on eight cancer-associated chromosomes was estimated using the microsatellite markers, and the 5'-transitional CpGs of 20 selected genes were examined by methylation analysis using the bisulfite-modified DNA. RESULTS: The extent of the transitional area was significantly shorter with the nearest Alu elements than with the nearest L1 and LTR elements, as well as in the extragenic regions containing a higher density of retroelements than in the intragenic regions. The CpG islands neighbouring a high density of Alu elements were consistently hypomethylated in both normal and tumor tissues. The 5'-transitional methylated CpG sites bordered by a low density of Alu elements or the L1 and LTR elements were hypomethylated more frequently in the high-level LOH cases than in the low-level LOH cases. CONCLUSION: The 5'-transitional methylated CpG sites not completely protected by the Alu elements were hypomethylated in association with LOH events in gastric cancers. This suggests that an irreversible unbalanced decrease in the genomic dose reduces the spread of L1 methylation in the 5'-end regions of genes
- ā¦