242 research outputs found

    Potentiation of porcine circovirus 2-induced postweaning multisystemic wasting syndrome by porcine parvovirus is associated with excessive production of tumor necrosis factor-alpha

    Get PDF
    This study investigated the potentiation of porcine circovirus 2 (PCV2)-induced postweaning multisystemic wasting syndrome by porcine parvovirus (PPV) and found it was associated with excessive production of tumor necrosis factor-a (TNF-a). Colostrum-deprived conventional pigs were inoculated intranasally with PCV2 or PPV alone or in combination (PCV2 and PPV). In vitro assay of TNF-a, obtained from alveolar macrophages coinfected with PCV2 and PPV, showed a significant increase in TNF-a compared to single infection of macrophages with either PCV2 or PPV alone (P , 0.05). All pigs inoculated with PCV2 and PPV developed severe postweaning wasting syndrome, whereas clinical signs (e.g., weight loss) were present but perhaps less severe in either PCV2- or PPV-inoculated pigs. Compared to the pigs inoculated with PCV2 or PPV alone, pigs inoculated dually with PCV2 and PPV showed significantly (P , 0.05) increased levels of TNF-a. Levels of TNF-a in the sera were reversely correlated with the body weight in pigs experimentally infected with dual inoculation of PCV2 and PPV (rs 5 20.92, P , 0.001). These data suggest that a potentiation of PPV in PCV2-induced PMWS is associated with the excessive production of TNF-a.The research reported here was supported by Ministry of Agriculture, Forestry and Fisheries-Special Grants Research Program (MAFF-SGRP) and Brain Korea 21 Project, Republic of Korea

    Unleashing the full potential of Hsp90 inhibitors as cancer therapeutics through simultaneous inactivation of Hsp90, Grp94, and TRAP1

    Get PDF
    Cancer therapeutics: Extending a drug's reach A new drug that blocks heat shock proteins (HSPs), helper proteins that are co-opted by cancer cells to promote tumor growth, shows promise for cancer treatment. Several drugs have targeted HSPs, since cancer cells are known to hijack these helper proteins to shield themselves from destruction by the body. However, the drugs have had limited success. Hye-Kyung Park and Byoung Heon Kang at Ulsan National Institutes of Science and Technology in South Korea and coworkers noticed that the drugs were not absorbed into mitochondria, a key cellular compartment, and HSPs in this compartment were therefore not being blocked. They identified a new HSP inhibitor that can reach every cellular compartment and inhibit all HSPs. Testing in mice showed that this inhibitor effectively triggered death of tumor cells, and therefore shows promise for anti-cancer therapy. The Hsp90 family proteins Hsp90, Grp94, and TRAP1 are present in the cell cytoplasm, endoplasmic reticulum, and mitochondria, respectively; all play important roles in tumorigenesis by regulating protein homeostasis in response to stress. Thus, simultaneous inhibition of all Hsp90 paralogs is a reasonable strategy for cancer therapy. However, since the existing pan-Hsp90 inhibitor does not accumulate in mitochondria, the potential anticancer activity of pan-Hsp90 inhibition has not yet been fully examined in vivo. Analysis of The Cancer Genome Atlas database revealed that all Hsp90 paralogs were upregulated in prostate cancer. Inactivation of all Hsp90 paralogs induced mitochondrial dysfunction, increased cytosolic calcium, and activated calcineurin. Active calcineurin blocked prosurvival heat shock responses upon Hsp90 inhibition by preventing nuclear translocation of HSF1. The purine scaffold derivative DN401 inhibited all Hsp90 paralogs simultaneously and showed stronger anticancer activity than other Hsp90 inhibitors. Pan-Hsp90 inhibition increased cytotoxicity and suppressed mechanisms that protect cancer cells, suggesting that it is a feasible strategy for the development of potent anticancer drugs. The mitochondria-permeable drug DN401 is a newly identified in vivo pan-Hsp90 inhibitor with potent anticancer activity

    Whole genomic approach in mutation discovery of infantile spasms patients

    Get PDF
    Infantile spasms (IS) are a clinically and genetically heterogeneous group of epilepsy disorders in early infancy. The genetic backgrounds of IS have been gradually unraveled along with the increased application of next-generation sequencing (NGS). However, to date, only selected genomic regions have been sequenced using a targeted approach in most cases of IS, and the genetic etiologies of the majority of patients remain unknown. We conducted a proof-of-concept study using whole-genome sequencing (WGS) for the genetic diagnosis of IS. We included 16 patients with IS for this study, and WGS was applied as a first-tier test for genetic diagnosis. In total, we sequenced the whole genomes of 28 participants, including the genomes of six patients, which were sequenced with those of their parents. Among variants identified, we focused on those located in epilepsy or seizure-associated genes. We used two different methods to call relevant large deletions from WGS results. We found pathogenic or likely pathogenic variants in four patients (25.0%); a de novo variant in HDAC4, compound heterozygous variants in GRM7, and heterozygous variants in CACNA1E and KMT2E. We also selected two more candidate variants in SOX5 and SHROOM4 intronic regions. Although there are currently several difficulties in applying WGS for genetic diagnosis, especially in clinical interpretation of non-coding variants, we believe that developing sequencing technologies would overcome these hurdles in the near future. Considering the vast genetic heterogeneity and the substantial portion of patients with unknown etiologies, further studies using whole genomic approaches are necessary for patients with IS

    A Three-Step Resolution-Reconfigurable Hazardous Multi-Gas Sensor Interface for Wireless Air-Quality Monitoring Applications

    Get PDF
    This paper presents a resolution-reconfigurable wide-range resistive sensor readout interface for wireless multi-gas monitoring applications that displays results on a smartphone. Three types of sensing resolutions were selected to minimize processing power consumption, and a dual-mode front-end structure was proposed to support the detection of a variety of hazardous gases with wide range of characteristic resistance. The readout integrated circuit (ROIC) was fabricated in a 0.18 ??m CMOS process to provide three reconfigurable data conversions that correspond to a low-power resistance-to-digital converter (RDC), a 12-bit successive approximation register (SAR) analog-to-digital converter (ADC), and a 16-bit delta-sigma modulator. For functional feasibility, a wireless sensor system prototype that included in-house microelectromechanical (MEMS) sensing devices and commercial device products was manufactured and experimentally verified to detect a variety of hazardous gases

    Effects of a modified live CSFV vaccine on the development of PMWS in pigs infected experimentally with PCV-2

    Get PDF
    The objective of this study was to determine the effect of vaccination against classical swine fever virus (CSFV) on the development of postweaning multisystemic wasting syndrome (PMWS) in conventional pigs infected experimentally with porcine circovirus type 2 (PCV-2). The pigs infected with PCV-2 and immunised with modified live CSFV developed mild to moderate PMWS, whereas none of the pigs infected with PCV-2 alone or immunised with modified live CSFV alone developed PMWS. Lesions histologically characteristic of PMWS were observed in lymph nodes from the pigs infected with PCV-2 and immunised with modified live CSFV vaccine, and extensive replication of PCV-2 was detected in the nodes by in situ hybridisation.This research was supported by contract research funds from the Research Institute for Veterinary Science of the College of Veterinary Medicine, and by the Brain Korea 21 Programme for Veterinary Science in the Republic of Korea

    A case of Rubinstein-Taybi Syndrome with a CREB-binding protein gene mutation

    Get PDF
    Rubinstein-Taybi syndrome (RTS) is a congenital disorder characterized by typical facial features, broad thumbs and toes, with mental retardation. Additionally, tumors, keloids and various congenital anomalies including congenital heart defects have been reported in RTS patients. In about 50% of the patients, mutations in the CREB binding protein (CREBBP) have been found, which are understood to be associated with cell growth and proliferation. Here, we describe a typical RTS patient with Arnold-Chiari malformation. A mutation in the CREBBP gene, c.4944_4945insC, was identified by mutational analysis

    Suppression of tobacco carcinogen-induced lung tumorigenesis by aerosol-delivered glycerol propoxylate triacrylate-spermine copolymer/short hairpin Rab25 rna complexes in female A/J mice

    Get PDF
    Background: Rab25, a member of Rab family of small guanosine triphosphatase, is associated with progression of various types of human cancers, including lung cancer, the leading cause of cancer-associated deaths around the globe. Methods: In this study, we report the gene therapeutic effect of short hairpin Rab25 RNA (shRab25) on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung tumorigenesis in female A/J mice. Initially, mice (6 weeks old) were injected with single dose of NNK (2mg/0.1mL saline/mouse) by intraperitoneal injection to induce the tumor. Eight weeks later, shRab25 was complexed with glycerol propoxylate triacrylate-spermine (GPT-SPE) copolymer and delivered into tobacco-induced lung cancer models through a nose-only inhalation system twice a week for 2 months. Results: GPT-SPE/shRab25 largely decreased the tobacco-induced tumor numbers and tumor volume in the lungs compared to GPT-SPE- or GPT-SPE/shScr-delivered groups. Remarkably, aerosol-delivered GPT-SPE/shRab25 significantly decreased the expression level of Rab25 and other prominent apoptosis-related proteins in female A/J mice. The apoptosis in these mice was determined by detecting the expression level of Bcl-2, proliferating cell nuclear antigen, Bax, and further confirmed by TUNEL assay. Conclusions: Our results strongly confirm the tumorigenic role of Rab25 in tobacco carcinogen-induced lung cancer and hence demonstrate aerosol delivery of shRab25 as a therapeutic target for lung cancer treatment.

    Fatal systemic disorder caused by biallelic variants in FARSA

    Get PDF
    Background : Aminoacyl tRNA transferases play an essential role in protein biosynthesis, and variants of these enzymes result in various human diseases. FARSA, which encodes the α subunit of cytosolic phenylalanyl-tRNA synthetase, was recently reported as a suspected causal gene for multiorgan disorder. This study aimed to validate the pathogenicity of variants in the FARSA gene. Results : Exome sequencing revealed novel compound heterozygous variants in FARSA, P347L and R475Q, from a patient who initially presented neonatal-onset failure to thrive, liver dysfunction, and frequent respiratory infections. His developmental milestones were nearly arrested, and the patient died at 28 months of age as a result of progressive hepatic and respiratory failure. The P347L variant was predicted to disrupt heterodimer interaction and failed to form a functional heterotetramer by structural and biochemical analyses. R475 is located at a highly conserved site and is reported to be involved in phenylalanine activation and transfer to tRNA. The R475Q mutant FARSA were co-purified with FARSB, but the mutant enzyme showed an approximately 36% reduction in activity in our assay relative to the wild-type protein. Additional functional analyses on variants from previous reports (N410K, F256L, R404C, E418D, and F277V) were conducted. The R404C variant from a patient waiting for organ transplantation also failed to form tetramers but the E418D, N410K, F256L, and F277V variants did not affect tetramer formation. In the functional assay, the N410K located at the phenylalanine-binding site exhibited no catalytic activity, whereas other variants (E418D, F256L and F277V) exhibited lower ATPase activity than wild-type FARSA at low phenylalanine concentrations. Conclusions : Our data demonstrated the pathogenicity of biallelic variants in FARSA and suggested the implication of hypomorphic variants in severe phenotypes.This study was supported by a research program funded by the Korea Disease Control and Prevention Agency (Grant Nos. 2021-ER0701-00 and 2020-ER6902-00)

    Serum α-synuclein and IL-1β are increased and correlated with measures of disease severity in children with epilepsy: potential prognostic biomarkers?

    Get PDF
    The search for noninvasive biomarkers of neuroinflammation and neurodegeneration has focused on various neurological disorders, including epilepsy. We sought to determine whether α-synuclein and cytokines are correlated with the degree of neuroinflammation and/or neurodegeneration in children with epilepsy and with acquired demyelinating disorders of the central nervous system (CNS), as a prototype of autoimmune neuroinflammatory disorders. We analyzed serum and exosome levels of α-synuclein and serum proinflammatory and anti-inflammatory cytokines among 115 children with epilepsy and 10 acquired demyelinating disorders of the CNS and compared to 146 controls. Patients were enrolled prospectively and blood was obtained from patients within 48 h after acute afebrile seizure attacks or relapse of neurological symptoms. Acquired demyelinating disorders of the CNS include acute disseminated encephalomyelitis, multiple sclerosis, neuromyelitis optica spectrum disorders, and transverse myelitis. The controls were healthy age-matched children. The serum exosomes were extracted with ExoQuick exosome precipitation solution. Serum α-synuclein levels and serum levels of cytokines including IFN-β, IFN-γ, IL-1β, IL-6, IL-10 and TNF-α were measured using single and multiplex ELISA kits. Data were analyzed and compared with measures of disease severity, such as age at disease onset, duration of disease, and numbers of antiepileptic drug in use. Serum α-synuclein levels were significantly increased in patients with epilepsy and acquired demyelinating disorders of the CNS compared to controls (both, p < 0.05) and showed correlation with measures of disease severity both in epilepsy (p < 0.05, r = 0.2132) and in acquired demyelinating disorders of the CNS (p < 0.05, r = 0.5892). Exosome α-synuclein showed a significant correlation with serum α-synuclein (p < 0.0001, r = 0.5915). Serum IL-1β levels were correlated only with the numbers of antiepileptic drug used in children with epilepsy (p < 0.001, r = 0.3428), suggesting drug resistant epilepsy. This is the first study in children demonstrating that serum α-synuclein levels were significantly increased in children with epilepsy and with acquired demyelinating disorders of the CNS and correlated with measures of disease severity. Serum IL-1β levels showed significant correlation only with drug resistance in children with epilepsy. Thus, these data support that serum levels of α-synuclein and IL-1β are potential prognostic biomarkers for disease severity in children with epilepsy. CNS, central nervous system.The analysis of cytokines was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2016R1A2B4009438), the Seoul National University Hospital Research Fund (No. 03–2015-0120), and the analysis of α- synuclein and exosomal analysis were supported by the Seoul National University Boramae Hospital Research Fund (No. 03–2013-8 and 01–2014-11) to JC1. The correlation analysis of cytokines and α-synuclein were supported by grants from the NRF funded by the Korean government (MEST) (No. 2017R1A2B3006704 and 2019R1A6A1A03032869) to JS. The role of the funding bodies is data collection, data analysis and document retrieval

    Spectrum of movement disorders in GNAO1 encephalopathy: in-depth phenotyping and case-by-case analysis

    Get PDF
    Background GNAO1 encephalopathy is a rare neurodevelopmental disorder characterized by distinct movement presentations and early onset epileptic encephalopathy. Here, we report the in-depth phenotyping of genetically confirmed patients with GNAO1 encephalopathy, focusing on movement presentations. Results Six patients who participated in Korean Undiagnosed Disease Program were diagnosed to have pathogenic or likely pathogenic variants in GNAO1 using whole exome sequencing. All medical records and personal video clips were analyzed with a literature review. Three of the 6 patients were male. Median follow-up duration was 41 months (range 7–78 months) and age at last examination was 7.4 years (range 3.3–16.9 years). Initial complaints were hypotonia or developmental delay in 5 and right-hand clumsiness in 1 patient, which were noticed at median age of 3 months (range 0–75 months). All patients showed global developmental delay and 4 had severely retarded development. Five patients (5/6, 83.3%) had many different movement symptoms with various onset and progression. The symptoms included stereotyped hands movement, non-epileptic myoclonus, dyskinesia, dystonia and choreoathetosis. Whole exome sequencing identified 6 different variants in GNAO1. Three were novel de novo variants and atypical presentation was noted in a patient. One variant turned out to be inherited from patients mother who had mosaic variant. Distinct and characteristics movement phenotypes in patients with variant p.Glu246Lys and p.Arg209His were elucidated by in-depth phenotyping and literature review. Conclusions We reported 6 patients with GNAO1 encephalopathy showing an extremely diverse clinical spectrum on video. Some characteristic movement features identified by careful inspection may also provide important diagnostic insight and practice guidelines.This study was supported by a research program funded by the Korea Centers for Disease Control and Prevention (Grant No. 2018-ER6901-02)
    corecore