19 research outputs found

    Electronic, magnetic and transport properties of Fe intercalated 2H-TaS2_2 studied by means of the KKR-CPA method

    Get PDF
    The electronic, magnetic and transport properties of Fe intercalated 2H-TaS2_2 have been investigated by means of the Korringa-Kohn-Rostoker (KKR) method. The non-stoichiometry and disorder in the system has been accounted for using the Coherent Potential Approximation (CPA) alloy theory. A pronounced influence of disorder on the spin magnetic moment has been found for the ferro-magnetically ordered material. The same applies for the spin-orbit induced orbital magnetic moment and magneto-crystalline anisotropy energy. The temperature-dependence of the resistivity of disordered 2H-Fe0.28_{0.28}TaS2_2 investigated on the basis of the Kubo-St\v{r}eda formalism in combination with the alloy analogy model has been found in very satisfying agreement with experimental data. This also holds for the temperature dependent anomalous Hall resistivity ρxy(T) \rho_{\rm xy}(T) . The role of thermally induced lattice vibrations and spin fluctuations for the transport properties is discussed in detail

    Spin-orbit induced longitudinal spin-polarized currents in non-magnetic solids

    Get PDF
    For certain non-magnetic solids with low symmetry the occurrence of spin-polarized longitudinal currents is predicted. These arise due to an interplay of spin-orbit interaction and the particular crystal symmetry. This result is derived using a group-theoretical scheme that allows investigating the symmetry properties of any linear response tensor relevant to the field of spintronics. For the spin conductivity tensor it is shown that only the magnetic Laue group has to be considered in this context. Within the introduced general scheme also the spin Hall- and additional related transverse effects emerge without making reference to the two-current model. Numerical studies confirm these findings and demonstrate for (Au1x_{1-x}Ptx_{\rm x})4_4Sc that the longitudinal spin conductivity may be in the same order of magnitude as the conventional transverse one. The presented formalism only relies on the magnetic space group and therefore is universally applicable to any type of magnetic order.Comment: 5 pages, 1 table, 2 figures (3 & 2 subfigures

    Calculating linear response functions for finite temperatures on the basis of the alloy analogy model

    Get PDF
    A scheme is presented that is based on the alloy analogy model and allows to account for thermal lattice vibrations as well as spin fluctuations when calculating response quantities in solids. Various models to deal with spin fluctuations are discussed concerning their impact on the resulting temperature dependent magnetic moment, longitudinal conductivity and Gilbert damping parameter. It is demonstrated that using the Monte Carlo (MC) spin configuration as an input, the alloy analogy model is capable to reproduce results of MC simulations on the average magnetic moment within all spin fluctuation models under discussion. On the other hand, response quantities are much more sensitive to the spin fluctuation model. Separate calculations accounting for either the thermal effect due to lattice vibrations or spin fluctuations show their comparable contributions to the electrical conductivity and Gilbert damping. However, comparison to results accounting for both thermal effects demonstrate violation of Matthiessen's rule, showing the non-additive effect of lattice vibrations and spin fluctuations. The results obtained for bcc Fe and fcc Ni are compared with the experimental data, showing rather good agreement for the temperature dependent electrical conductivity and Gilbert damping parameter

    The temperature dependence of FeRh's transport properties

    Get PDF
    The finite-temperature transport properties of FeRh compounds are investigated by first-principles Density Functional Theory-based calculations. The focus is on the behavior of the longitudinal resistivity with rising temperature, which exhibits an abrupt decrease at the metamagnetic transition point, T=TmT = T_m between ferro- and antiferromagnetic phases. A detailed electronic structure investigation for T0T \geq 0 K explains this feature and demonstrates the important role of (i) the difference of the electronic structure at the Fermi level between the two magnetically ordered states and (ii) the different degree of thermally induced magnetic disorder in the vicinity of TmT_m, giving different contributions to the resistivity. To support these conclusions, we also describe the temperature dependence of the spin-orbit induced anomalous Hall resistivity and Gilbert damping parameter. For the various response quantities considered the impact of thermal lattice vibrations and spin fluctuations on their temperature dependence is investigated in detail. Comparison with corresponding experimental data finds in general a very good agreement

    The temperature dependence of FeRh’s transport properties

    Get PDF
    The finite-temperature transport properties of FeRh compounds are investigated by first-principles Density Functional Theory-based calculations. The focus is on the behavior of the longitudinal resistivity with rising temperature, which exhibits an abrupt decrease at the metamagnetic transition point, T = Tm between ferro- and antiferromagnetic phases. A detailed electronic structure investigation for T ≥ 0 K explains this feature and demonstrates the important role of (i) the difference of the electronic structure at the Fermi level between the two magnetically ordered states and (ii) the different degree of thermally induced magnetic disorder in the vicinity of Tm, giving different contributions to the resistivity. To support these conclusions, we also describe the temperature dependence of the spin-orbit induced anomalous Hall resistivity and Gilbert damping parameter. For the various response quantities considered the impact of thermal lattice vibrations and spin fluctuations on their temperature dependence is investigated in detail. Comparison with corresponding experimental data finds in general a very good agreement

    First-principles linear response description of the spin Nernst effect

    No full text

    Efficient Spin Injector Scheme Based on Heusler Materials

    No full text
    We present a rational design scheme intended to provide stable high spin polarization at the interfaces of the magnetoresistive junctions by fulfilling the criteria of structural and chemical compatibilities at the interface. This can be realized by joining the semiconducting and half-metallic Heusler materials with similar structures. The present first-principles calculations verify that the interface remains half-metallic if the nearest interface layers effectively form a stable Heusler material with the properties intermediately between the surrounding bulk parts. This leads to a simple rule for selecting the proper combinations
    corecore