177 research outputs found

    A Study of the Influence of Sex on Genome Wide Methylation

    Get PDF
    Sex differences in methylation status have been observed in specific gene-disease studies and healthy methylation variation studies, but little work has been done to study the impact of sex on methylation at the genome wide locus-to-locus level or to determine methods for accounting for sex in genomic association studies. In this study we investigate the genomic sex effect on saliva DNA methylation of 197 subjects (54 females) using 20,493 CpG sites. Three methods, two-sample T-test, principle component analysis and independent component analysis, all successfully identify sex influences. The results show that sex not only influences the methylation of genes in the X chromosome but also in autosomes. 580 autosomal sites show strong differences between males and females. They are found to be highly involved in eight functional groups, including DNA transcription, RNA splicing, membrane, etc. Equally important is that we identify some methylation sites associated with not only sex, but also other phenotypes (age, smoking and drinking level, and cancer). Verification was done through an independent blood cell DNA methylation data (1298 CpG sites from a cancer panel array). The same genomic site-specific influence pattern and potential confounding effects with cancer were observed. The overlapping rate of identified sex affected genes between saliva and blood cell is 81% for X chromosome, and 8% for autosomes. Therefore, correction for sex is necessary. We propose a simple correction method based on independent component analysis, which is a data driven method and accommodates sample differences. Comparison before and after the correction suggests that the method is able to effectively remove the potentially confounding effects of sex, and leave other phenotypes untouched. As such, our method is able to disentangle the sex influence on a genome wide level, and paves the way to achieve more accurate association analyses in genome wide methylation studies

    Incorporating functional inter-relationships into protein function prediction algorithms

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Functional classification schemes (e.g. the Gene Ontology) that serve as the basis for annotation efforts in several organisms are often the source of gold standard information for computational efforts at supervised protein function prediction. While successful function prediction algorithms have been developed, few previous efforts have utilized more than the protein-to-functional class label information provided by such knowledge bases. For instance, the Gene Ontology not only captures protein annotations to a set of functional classes, but it also arranges these classes in a DAG-based hierarchy that captures rich inter-relationships between different classes. These inter-relationships present both opportunities, such as the potential for additional training examples for small classes from larger related classes, and challenges, such as a harder to learn distinction between similar GO terms, for standard classification-based approaches.</p> <p>Results</p> <p>We propose a method to enhance the performance of classification-based protein function prediction algorithms by addressing the issue of using these interrelationships between functional classes constituting functional classification schemes. Using a standard measure for evaluating the semantic similarity between nodes in an ontology, we quantify and incorporate these inter-relationships into the <it>k</it>-nearest neighbor classifier. We present experiments on several large genomic data sets, each of which is used for the modeling and prediction of over hundred classes from the GO Biological Process ontology. The results show that this incorporation produces more accurate predictions for a large number of the functional classes considered, and also that the classes benefitted most by this approach are those containing the fewest members. In addition, we show how our proposed framework can be used for integrating information from the entire GO hierarchy for improving the accuracy of predictions made over a set of base classes. Finally, we provide qualitative and quantitative evidence that this incorporation of functional inter-relationships enables the discovery of interesting biology in the form of novel functional annotations for several yeast proteins, such as Sna4, Rtn1 and Lin1.</p> <p>Conclusion</p> <p>We implemented and evaluated a methodology for incorporating interrelationships between functional classes into a standard classification-based protein function prediction algorithm. Our results show that this incorporation can help improve the accuracy of such algorithms, and help uncover novel biology in the form of previously unknown functional annotations. The complete source code, a sample data set and the additional files for this paper are available free of charge for non-commercial use at <url>http://www.cs.umn.edu/vk/gaurav/functionalsimilarity/</url>.</p

    The Nanostructure of Myoendothelial Junctions Contributes to Signal Rectification between Endothelial and Vascular Smooth Muscle Cells

    Get PDF
    Micro-anatomical structures in tissues have potential physiological effects. In arteries and arterioles smooth muscle cells and endothelial cells are separated by the internal elastic lamina, but the two cell layers often make contact through micro protrusions called myoendothelial junctions. Cross talk between the two cell layers is important in regulating blood pressure and flow. We have used a spatiotemporal mathematical model to investigate how the myoendothelial junctions affect the information flow between the two cell layers. The geometry of the model mimics the structure of the two cell types and the myoendothelial junction. The model is implemented as a 2D axi-symmetrical model and solved using the finite element method. We have simulated diffusion of Ca2+ and IP3 between the two cell types and we show that the micro-anatomical structure of the myoendothelial junction in itself may rectify a signal between the two cell layers. The rectification is caused by the asymmetrical structure of the myoendothelial junction. Because the head of the myoendothelial junction is separated from the cell it is attached to by a narrow neck region, a signal generated in the neighboring cell can easily drive a concentration change in the head of the myoendothelial protrusion. Subsequently the signal can be amplified in the head, and activate the entire cell. In contrast, a signal in the cell from which the myoendothelial junction originates will be attenuated and delayed in the neck region as it travels into the head of the myoendothelial junction and the neighboring cell

    Extracellular Superoxide Dismutase Protects Histoplasma Yeast Cells from Host-Derived Oxidative Stress

    Get PDF
    In order to establish infections within the mammalian host, pathogens must protect themselves against toxic reactive oxygen species produced by phagocytes of the immune system. The fungal pathogen Histoplasma capsulatum infects both neutrophils and macrophages but the mechanisms enabling Histoplasma yeasts to survive in these phagocytes have not been fully elucidated. We show that Histoplasma yeasts produce a superoxide dismutase (Sod3) and direct it to the extracellular environment via N-terminal and C-terminal signals which promote its secretion and association with the yeast cell surface. This localization permits Sod3 to protect yeasts specifically from exogenous superoxide whereas amelioration of endogenous reactive oxygen depends on intracellular dismutases such as Sod1. While infection of resting macrophages by Histoplasma does not stimulate the phagocyte oxidative burst, interaction with polymorphonuclear leukocytes (PMNs) and cytokine-activated macrophages triggers production of reactive oxygen species (ROS). Histoplasma yeasts producing Sod3 survive co-incubation with these phagocytes but yeasts lacking Sod3 are rapidly eliminated through oxidative killing similar to the effect of phagocytes on Candida albicans yeasts. The protection provided by Sod3 against host-derived ROS extends in vivo. Without Sod3, Histoplasma yeasts are attenuated in their ability to establish respiratory infections and are rapidly cleared with the onset of adaptive immunity. The virulence of Sod3-deficient yeasts is restored in murine hosts unable to produce superoxide due to loss of the NADPH-oxidase function. These results demonstrate that phagocyte-produced ROS contributes to the immune response to Histoplasma and that Sod3 facilitates Histoplasma pathogenesis by detoxifying host-derived reactive oxygen thereby enabling Histoplasma survival

    Epithelial to Mesenchymal Transition Is Mechanistically Linked with Stem Cell Signatures in Prostate Cancer Cells

    Get PDF
    Current management of patients diagnosed with prostate cancer (PCa) is very effective; however, tumor recurrence with Castrate Resistant Prostate Cancer (CRPC) and subsequent metastasis lead to poor survival outcome, suggesting that there is a dire need for novel mechanistic understanding of tumor recurrence, which would be critical for designing novel therapies. The recurrence and the metastasis of PCa are tightly linked with the biology of prostate cancer stem cells or cancer-initiating cells that is reminiscent of the acquisition of Epithelial to Mesenchymal Transition (EMT) phenotype. Increasing evidence suggests that EMT-type cells share many biological characteristics with cancer stem-like cells.In this study, we found that PCa cells with EMT phenotype displayed stem-like cell features characterized by increased expression of Sox2, Nanog, Oct4, Lin28B and/or Notch1, consistent with enhanced clonogenic and sphere (prostasphere)-forming ability and tumorigenecity in mice, which was associated with decreased expression of miR-200 and/or let-7 family. Reversal of EMT by re-expression of miR-200 inhibited prostasphere-forming ability of EMT-type cells and reduced the expression of Notch1 and Lin28B. Down-regulation of Lin28B increased let-7 expression, which was consistent with repressed self-renewal capability.These results suggest that miR-200 played a pivotal role in linking the characteristics of cancer stem-like cells with EMT-like cell signatures in PCa. Selective elimination of cancer stem-like cells by reversing the EMT phenotype to Mesenchymal-Epithelial Transition (MET) phenotype using novel agents would be useful for the prevention of tumor recurrence especially by eliminating those cells that are the "Root Cause" of tumor development and recurrence

    Immunospecific Responses to Bacterial Elongation Factor Tu during Burkholderia Infection and Immunization

    Get PDF
    Burkholderia pseudomallei is the etiological agent of melioidosis, a disease endemic in parts of Southeast Asia and Northern Australia. Currently there is no licensed vaccine against infection with this biological threat agent. In this study, we employed an immunoproteomic approach and identified bacterial Elongation factor-Tu (EF-Tu) as a potential vaccine antigen. EF-Tu is membrane-associated, secreted in outer membrane vesicles (OMVs), and immunogenic during Burkholderia infection in the murine model of melioidosis. Active immunization with EF-Tu induced antigen-specific antibody and cell-mediated immune responses in mice. Mucosal immunization with EF-Tu also reduced lung bacterial loads in mice challenged with aerosolized B. thailandensis. Our data support the utility of EF-Tu as a novel vaccine immunogen against bacterial infection
    corecore