147 research outputs found
SUSY Stops at a Bump
We discuss collider signatures of the "natural supersymmetry" scenario with
baryon-number violating R-parity violation. We argue that this is one of the
few remaining viable incarnations of weak scale supersymmetry consistent with
full electroweak naturalness. We show that this intriguing and challenging
scenario contains distinctive LHC signals, resonances of hard jets in
conjunction with relatively soft leptons and missing energy, which are easily
overlooked by existing LHC searches. We propose novel strategies for
distinguishing these signals above background, and estimate their potential
reach at the 8 TeV LHC. We show that other multi-lepton signals of this
scenario can be seen by currently existing searches with increased statistics,
but these opportunities are more spectrum-dependent.Comment: 23 pages, 7 figures, 3 tables. V2: spectrum discussion corrected,
most of the changes are in Sec. 2. Benchmarks, analysis and conclusions
unchanged. References adde
Bounds on SCFTs from Conformal Perturbation Theory
The operator product expansion (OPE) in 4d (super)conformal field theory is
of broad interest, for both formal and phenomenological applications. In this
paper, we use conformal perturbation theory to study the OPE of nearly-free
fields coupled to SCFTs. Under fairly general assumptions, we show that the OPE
of a chiral operator of dimension with its complex
conjugate always contains an operator of dimension less than . Our
bounds apply to Banks-Zaks fixed points and their generalizations, as we
illustrate using several examples.Comment: 36 pages; v2: typos fixed, minor change
Flavor of quiver-like realizations of effective supersymmetry
We present a class of supersymmetric models which address the flavor puzzle
and have an inverted hierarchy of sfermions. Their construction involves
quiver-like models with link fields in generic representations. The magnitude
of Standard-Model parameters is obtained naturally and a relatively heavy Higgs
boson is allowed without fine tuning. Collider signatures of such models are
possibly within the reach of LHC in the near future.Comment: LaTeX, 17 pages, 3 figures. V2: reference adde
Natural Supersymmetry at the LHC
If the minimal supersymmetric standard model is the solution to the hierarchy
problem, the scalar top quark (stop) and the Higgsino should weigh around the
electroweak scale such as 200 GeV. A low messenger scale, which results in a
light gravitino, is also suggested to suppress the quantum corrections to the
Higgs mass parameters. Therefore the minimal model for natural supersymmetry is
a system with stop/Higgsino/gravitino whereas other superparticles are heavy.
We study the LHC signatures of the minimal system and discuss the discovery
potential and methods for the mass measurements.Comment: 19 pages, 6 figures, 1 tabl
Anomalous Dimensions of Non-Chiral Operators from AdS/CFT
Non-chiral operators with positive anomalous dimensions can have interesting
applications to supersymmetric model building. Motivated by this, we develop a
new method for obtaining the anomalous dimensions of non-chiral double-trace
operators in N=1 superconformal field theories (SCFTs) with weakly-coupled AdS
duals. Via the Hamiltonian formulation of AdS/CFT, we show how to directly
compute the anomalous dimension as a bound state energy in the gravity dual.
This simplifies previous approaches based on the four-point function and the
OPE. We apply our method to a class of effective AdS5 supergravity models, and
we find that the binding energy can have either sign. If such models can be UV
completed, they will provide the first calculable examples of SCFTs with
positive anomalous dimensions.Comment: 38 pages, 2 figures, refs adde
Combining Anomaly and Z' Mediation of Supersymmetry Breaking
We propose a scenario in which the supersymmetry breaking effect mediated by
an additional U(1)' is comparable with that of anomaly mediation. We argue that
such a scenario can be naturally realized in a large class of models. Combining
anomaly with Z' mediation allows us to solve the tachyonic slepton problem of
the former and avoid significant fine tuning in the latter. We focus on an
NMSSM-like scenario where U(1)' gauge invariance is used to forbid a tree-level
mu term, and present concrete models, which admit successful dynamical
electroweak symmetry breaking. Gaugino masses are somewhat lighter than the
scalar masses, and the third generation squarks are lighter than the first two.
In the specific class of models under consideration, the gluino is light since
it only receives a contribution from 2-loop anomaly mediation, and it decays
dominantly into third generation quarks. Gluino production leads to distinct
LHC signals and prospects of early discovery. In addition, there is a
relatively light Z', with mass in the range of several TeV. Discovering and
studying its properties can reveal important clues about the underlying model.Comment: Minor changes: references added, typos corrected, journal versio
A natural little hierarchy for RS from accidental SUSY
We use supersymmetry to address the little hierarchy problem in
Randall-Sundrum models by naturally generating a hierarchy between the IR scale
and the electroweak scale. Supersymmetry is broken on the UV brane which
triggers the stabilization of the warped extra dimension at an IR scale of
order 10 TeV. The Higgs and top quark live near the IR brane whereas light
fermion generations are localized towards the UV brane. Supersymmetry breaking
causes the first two sparticle generations to decouple, thereby avoiding the
supersymmetric flavour and CP problems, while an accidental R-symmetry protects
the gaugino mass. The resulting low-energy sparticle spectrum consists of
stops, gauginos and Higgsinos which are sufficient to stabilize the little
hierarchy between the IR scale and the electroweak scale. Finally, the
supersymmetric little hierarchy problem is ameliorated by introducing a singlet
Higgs field on the IR brane.Comment: 37 pages, 3 figures; v2: minor corrections, version published in JHE
(De)Constructing a Natural and Flavorful Supersymmetric Standard Model
Using the framework of deconstruction, we construct simple, weakly-coupled
supersymmetric models that explain the Standard Model flavor hierarchy and
produce a flavorful soft spectrum compatible with precision limits. Electroweak
symmetry breaking is fully natural; the mu-term is dynamically generated with
no B mu-problem and the Higgs mass is easily raised above LEP limits without
reliance on large radiative corrections. These models possess the distinctive
spectrum of superpartners characteristic of "effective supersymmetry": the
third generation superpartners tend to be light, while the rest of the scalars
are heavy.Comment: 36 pages, 4 figures ; v2: references added, expanded discussion of
FCNC
Flavor Mediation Delivers Natural SUSY
If supersymmetry (SUSY) solves the hierarchy problem, then naturalness
considerations coupled with recent LHC bounds require non-trivial superpartner
flavor structures. Such "Natural SUSY" models exhibit a large mass hierarchy
between scalars of the third and first two generations as well as degeneracy
(or alignment) among the first two generations. In this work, we show how this
specific beyond the standard model (SM) flavor structure can be tied directly
to SM flavor via "Flavor Mediation". The SM contains an anomaly-free SU(3)
flavor symmetry, broken only by Yukawa couplings. By gauging this flavor
symmetry in addition to SM gauge symmetries, we can mediate SUSY breaking via
(Higgsed) gauge mediation. This automatically delivers a natural SUSY spectrum.
Third-generation scalar masses are suppressed due to the dominant breaking of
the flavor gauge symmetry in the top direction. More subtly, the
first-two-generation scalars remain highly degenerate due to a custodial U(2)
symmetry, where the SU(2) factor arises because SU(3) is rank two. This
custodial symmetry is broken only at order (m_c/m_t)^2. SUSY gauge coupling
unification predictions are preserved, since no new charged matter is
introduced, the SM gauge structure is unaltered, and the flavor symmetry treats
all matter multiplets equally. Moreover, the uniqueness of the anomaly-free
SU(3) flavor group makes possible a number of concrete predictions for the
superpartner spectrum.Comment: 17 pages, 7 figures, 2 tables. v2 references added, minor changes to
flavor constraints and a little discussion adde
A Light Stop with Flavor in Natural SUSY
The discovery of a SM-like Higgs boson near 125 GeV and the flavor texture of
the Standard Model motivate the investigation of supersymmetric quiver-like BSM
extensions. We study the properties of such a minimal class of models which
deals naturally with the SM parameters. Considering experimental bounds as well
as constraints from flavor physics and Electro-Weak Precision Data, we find the
following. In a self-contained minimal model - including the full dynamics of
the Higgs sector - top squarks below a TeV are in tension with b->s{\gamma}
constraints. Relaxing the assumption concerning the mass generation of the
heavy Higgses, we find that a stop not far from half a TeV is allowed. The
models have some unique properties, e.g. an enhancement of the h->
b\bar{b},\tau\bar{{\tau}} decays relative to the h->\gamma{\gamma} one, a
gluino about 3 times heavier than the stop, an inverted hierarchy of about 3-20
between the squarks of the first two generations and the stop, relatively light
Higgsino neutralino or stau NLSP, as well as heavy Higgses and a W' which may
be within reach of the LHC.Comment: LaTeX, 22 pages, 4 figures; V2: references adde
- …