23 research outputs found

    The DEAD-box RNA Helicase DDX6 is Required for Efficient Encapsidation of a Retroviral Genome

    Get PDF
    Viruses have to encapsidate their own genomes during the assembly process. For most RNA viruses, there are sequences within the viral RNA and virion proteins needed for high efficiency of genome encapsidation. However, the roles of host proteins in this process are not understood. Here we find that the cellular DEAD-box RNA helicase DDX6 is required for efficient genome packaging of foamy virus, a spumaretrovirus. After infection, a significant amount of DDX6, normally concentrated in P bodies and stress granules, re-localizes to the pericentriolar site where viral RNAs and Gag capsid proteins are concentrated and capsids are assembled. Knockdown of DDX6 by siRNA leads to a decreased level of viral nucleic acids in extracellular particles, although viral protein expression, capsid assembly and release, and accumulation of viral RNA and Gag protein at the assembly site are little affected. DDX6 does not interact stably with Gag proteins nor is it incorporated into particles. However, we find that the ATPase/helicase motif of DDX6 is essential for viral replication. This suggests that the ATP hydrolysis and/or the RNA unwinding activities of DDX6 function in moderating the viral RNA conformation and/or viral RNA-Gag ribonucleoprotein complex in a transient manner to facilitate incorporation of the viral RNA into particles. These results reveal a unique role for a highly conserved cellular protein of RNA metabolism in specifically re-locating to the site of viral assembly for its function as a catalyst in retroviral RNA packaging

    Relationships of PBMC microRNA expression, plasma viral load, and CD4+ T-cell count in HIV-1-infected elite suppressors and viremic patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>HIV-1-infected elite controllers or suppressors (ES) maintain undetectable viral loads (< 50 copies/mL) without antiretroviral therapy. The mechanisms of suppression are incompletely understood. Modulation of HIV-1 replication by miRNAs has been reported, but the role of small RNAs in ES is unknown. Using samples from a well-characterized ES cohort, untreated viremic patients, and uninfected controls, we explored the PBMC miRNA profile and probed the relationships of miRNA expression, CD4+ T-cell counts, and viral load.</p> <p>Results</p> <p>miRNA profiles, obtained using multiple acquisition, data processing, and analysis methods, distinguished ES and uninfected controls from viremic HIV-1-infected patients. For several miRNAs, however, ES and viremic patients shared similar expression patterns. Differentially expressed miRNAs included those with reported roles in HIV-1 latency (miR-29 family members, miRs -125b and -150). Others, such as miR-31 and miR-31*, had no previously reported connection with HIV-1 infection but were found here to differ significantly with uncontrolled HIV-1 replication. Correlations of miRNA expression with CD4+ T-cell count and viral load were found, and we observed that ES with low CD4+ T-cell counts had miRNA profiles more closely related to viremic patients than controls. However, expression patterns indicate that miRNA variability cannot be explained solely by CD4+ T-cell variation.</p> <p>Conclusions</p> <p>The intimate involvement of miRNAs in disease processes is underscored by connections of miRNA expression with the HIV disease clinical parameters of CD4 count and plasma viral load. However, miRNA profile changes are not explained completely by these variables. Significant declines of miRs-125b and -150, among others, in both ES and viremic patients indicate the persistence of host miRNA responses or ongoing effects of infection despite viral suppression by ES. We found no negative correlations with viral load in viremic patients, not even those that have been reported to silence HIV-1 in vitro, suggesting that the effects of these miRNAs are exerted in a focused, cell-type-specific manner. Finally, the observation that some ES with low CD4 counts were consistently related to viremic patients suggests that miRNAs may serve as biomarkers for risk of disease progression even in the presence of viral suppression.</p

    A Re-Examination of Global Suppression of RNA Interference by HIV-1

    Get PDF
    The nature of the interaction between replicating HIV-1 and the cellular RNAi pathway has been controversial, but it is clear that it can be complex and multifaceted. It has been proposed that the interaction is bi-directional, whereby cellular silencing pathways can restrict HIV-1 replication, and in turn, HIV-1 can suppress silencing pathways. Overall suppression of RNAi has been suggested to occur via direct binding and inhibition of Dicer by the HIV-1 Tat protein or through sequestration of TRBP, a Dicer co-factor, by the structured TAR element of HIV-1 transcripts. The role of Tat as an inhibitor of Dicer has been questioned and our results support and extend the conclusion that Tat does not inhibit RNAi that is mediated by either exogenous or endogenous miRNAs. Similarly, we find no suppression of silencing pathways in cells with replicating virus, suggesting that viral products such as the TAR RNA elements also do not reduce the efficacy of cellular RNA silencing. However, knockdown of Dicer does allow increased viral replication and this occurs at a post-transcriptional level. These results support the idea that although individual miRNAs can act to restrict HIV-1 replication, the virus does not counter these effects through a global suppression of RNAi synthesis or processing

    RNAi in the regulation of mammalian viral infections

    Get PDF
    Although RNA interference (RNAi) is known to play an important part in defense against viruses of invertebrates, its contribution to mammalian anti-viral defense has been a matter of dispute. This is surprising because all components of the RNAi machinery necessary for robust RNAi-mediated restriction of viruses are conserved in mammals, and the introduction of synthetic small interfering RNAs (siRNAs) into cells efficiently silences the replication of viruses that contain siRNA complementary sequences in those cells. Here, I discuss the reasons for the dispute, and review the evidence that RNAi is a part of the physiological defense of mammalian cells against viral infections

    Molecular control of HIV-1 postintegration latency: implications for the development of new therapeutic strategies

    Get PDF
    The persistence of HIV-1 latent reservoirs represents a major barrier to virus eradication in infected patients under HAART since interruption of the treatment inevitably leads to a rebound of plasma viremia. Latency establishes early after infection notably (but not only) in resting memory CD4+ T cells and involves numerous host and viral trans-acting proteins, as well as processes such as transcriptional interference, RNA silencing, epigenetic modifications and chromatin organization. In order to eliminate latent reservoirs, new strategies are envisaged and consist of reactivating HIV-1 transcription in latently-infected cells, while maintaining HAART in order to prevent de novo infection. The difficulty lies in the fact that a single residual latently-infected cell can in theory rekindle the infection. Here, we review our current understanding of the molecular mechanisms involved in the establishment and maintenance of HIV-1 latency and in the transcriptional reactivation from latency. We highlight the potential of new therapeutic strategies based on this understanding of latency. Combinations of various compounds used simultaneously allow for the targeting of transcriptional repression at multiple levels and can facilitate the escape from latency and the clearance of viral reservoirs. We describe the current advantages and limitations of immune T-cell activators, inducers of the NF-κB signaling pathway, and inhibitors of deacetylases and histone- and DNA- methyltransferases, used alone or in combinations. While a solution will not be achieved by tomorrow, the battle against HIV-1 latent reservoirs is well- underway

    Human cellular restriction factors that target HIV-1 replication

    Get PDF
    Recent findings have highlighted roles played by innate cellular factors in restricting intracellular viral replication. In this review, we discuss in brief the activities of apolipoprotein B mRNA-editing enzyme 3G (APOBEC3G), bone marrow stromal cell antigen 2 (BST-2), cyclophilin A, tripartite motif protein 5 alpha (Trim5α), and cellular microRNAs as examples of host restriction factors that target HIV-1. We point to countermeasures encoded by HIV-1 for moderating the potency of these cellular restriction functions

    Host restriction factors in retroviral infection: promises in virus-host interaction

    Get PDF

    ERK5 activates NF-kappaB in leukemic T cells and is essential for their growth in vivo

    No full text
    International audienceMAPK cascades play a central role in the cellular response to the environment. The pathway involving the MAPK ERK5 mediates growth factor- and stress-induced intracellular signaling that controls proliferation or survival depending upon the cell context. In this study, we show that reducing ERK5 levels with a specific small hairpin RNA 5 (shERK5) reduced cell viability, sensitized cells to death receptor-induced apoptosis, and blocked the palliative effects of phorbol ester in anti-Fas Ab-treated cells. shERK5 decreased nuclear accumulation of the NF-kappaB p65 subunit, and conversely, ectopic activation of ERK5 led to constitutive nuclear localization of p65 and increased its ability to trans activate specific reporter genes. Finally, the T lymphoma cell line EL-4, upon expression of shERK5, proliferated in vitro, but failed to induce s.c. tumors in mice. Our results suggest that ERK5 is essential for survival of leukemic T cells in vivo, and thus represents a promising target for therapeutic intervention in this type of malignancy
    corecore