5,913 research outputs found
N_pN_n dependence of empirical formula for the lowest excitation energy of the 2^+ states in even-even nuclei
We examine the effects of the additional term of the type on the recently proposed empirical formula for the lowest excitation
energy of the states in even-even nuclei. This study is motivated by the
fact that this term carries the favorable dependence of the valence nucleon
numbers dictated by the scheme. We show explicitly that there is not
any improvement in reproducing by including the extra
term. However, our study also reveals that the excitation energies
, when calculated by the term alone (with the mass number
dependent term), are quite comparable to those calculated by the original
empirical formula.Comment: 14 pages, 5 figure
Magnetic field measurements and radiation simulation for a superconducting transverse-gradient undulator
The transverse gradient undulator (TGU) concept is a way to enable short-gain length free electron lasers with laser-plasma accelerated electron bunches, although their energy spread is typically in the percent range. In this contribution, we report on the magnetic field measurements on a 40-period superconducting TGU designed, manufactured and commissioned at the Karlsruhe Institute of Technology (KIT). As the figure of merit for the field quality, tracking and radiation field simulations, based on the measured fields, will be presented
Potential identity of multi-potential cancer stem-like subpopulation after radiation of cultured brain glioma
<p>Abstract</p> <p>Background</p> <p>Glioblastoma multiforme (GBM) is the most frequently encountered brain cancer. Although the existence of cancer stem cells in GBM has been previously established, there is little evidence to explain the difference between cancer stem cells and radio-resistant cells in GBM. In an effort to increase our understanding of whether cellular radio-resistance is a characteristic associated with cancer stem cells, we developed a dissociated cell system of subpopulations derived from GBM, and demonstrated radiotherapy resistance therein.</p> <p>Results</p> <p>The radio-resistant cancer cell subpopulations of GBM abundantly express CD133, CD117, CD71, and CD45 surface markers, and these radio-resistant cancer cell subpopulations have the capacity for extensive proliferation, self-renewal, and pluripotency. These radio-resistant cancer subpopulations have been shown to initiate tumorigenesis when transplanted into SCID mouse brains. Moreover, these tumors evidenced highly peculiar nest-like shapes harboring both vascular and cancerous tissue structures, which expressed the blood vessel specific marker, the von Willebrand factor. Accordingly, subpopulations of radio-resistant cells in GBM have been shown to be very similar to hematopoietic stem cells (HSCs) in the circulating blood. This similarity may contribute to increased tumor growth and GBM recurrence.</p> <p>Conclusion</p> <p>The results of the present study provide further evidence for radio resistant subpopulations of cancer stem cells in GBM. Also, our results will assist in the identification and characterization of cancer stem cell populations in glioma, and will help to improve the therapeutic outcomes of GBM.</p
Development of Bis-GMA-free biopolymer to avoid estrogenicity
Objective:
Although bisphenol A-glycidyl methacrylate (Bis-GMA)-based dental materials are widely used in dentistry, Estrogenicity from released bisphenol A remains a concern due to possibility of adversely affecting the growth of children and homeostasis of adults. Here, a new family of isosorbide-derived biomonomers were synthesized and experimentally utilized as a matrix of dental sealants to provide physico-mechanical and biological properties comparable to those of a conventional Bis-GMA-based material but without the the potential estrogenicity. /
Methods:
After synthesis of isosorbide-derived biomonomers (ISDB) by light polymerization, an experimental dental sealant with different silica filler concentrations (0–15 wt%) was characterized and compared to a commercially available Bis-GMA-based sealant. Cytotoxicity and estrogenicity assays were conducted with human oral keratinocytes and estrogen-sensitive MCF-7 cells, respectively. /
Results:
ISDB-based dental sealants exhibited typical initially smooth surfaces with depth of cure, Vickers hardness, compressive strength/modulus, water resorption/solubility, and flowability comparable to those of the commercial sealant and met the ISO standard for dental sealants and polymer-based restorative materials. Indirect cytotoxicity tests using an extract showed comparable viability among experimental ISDB-based materials and a commercial Bis-GMA-incorporated control. DNA synthesis in MCF-7 cells (a marker of estrogenicity) and the release of bisphenol A under enzymatic incubation were not detected in ISDB-based materials. /
Significance:
In conclusion, the comparable physico-mechanical properties of ISDB-based materials with their cytocompatibility and lack of estrogenicity suggest the potential usefulness of ISDBs as a newly developed and safe biomaterial
A research on ICT standards management based on standards reusability analysis
Standards are those generally agreed through repetitive use. They also make products and services more reliable. Thus, when developing standards, one should at first be aware of what the market actually needs not what the developers and providers want. If not, unnecessary standards will eventually end up being unused and dismissed. In this sense, standards developed primarily based on users' point of view are much more reusable. As information and communication technology (ICT) being accelerated these days, the number of standardisation activities has been dramatically increased and a great number of group and international standards has been developed all over the world. Therefore, Standards Developing Organisations (SDOs) follow routine maintenance procedures on their developed standards in order to assure their quality. In this paper, the authors propose a methodology for managing developed standards to enhance standards reusability in terms of standards development, maintenance, and management
Branes in the plane wave background with gauge field condensates
Supersymmetric branes in the plane wave background with additional constant
magnetic fields are studied from the world-sheet point of view. It is found
that in contradistinction to flat space, boundary condensates on some maximally
supersymmetric branes necessarily break at least some supersymmetries. The
maximally supersymmetric cases with condensates are shown to be in one to one
correspondence with the previously classified class II branes.Comment: LaTeX, 31 pages, no figures; v2: references added, some typos
correcte
Urinary bladder segmentation in CT urography using deepâ learning convolutional neural network and level sets
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134923/1/mp4498.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134923/2/mp4498_am.pd
Phase Transitions in the Two-Dimensional XY Model with Random Phases: a Monte Carlo Study
We study the two-dimensional XY model with quenched random phases by Monte
Carlo simulation and finite-size scaling analysis. We determine the phase
diagram of the model and study its critical behavior as a function of disorder
and temperature. If the strength of the randomness is less than a critical
value, , the system has a Kosterlitz-Thouless (KT) phase transition
from the paramagnetic phase to a state with quasi-long-range order. Our data
suggest that the latter exists down to T=0 in contradiction with theories that
predict the appearance of a low-temperature reentrant phase. At the critical
disorder and for there is no
quasi-ordered phase. At zero temperature there is a phase transition between
two different glassy states at . The functional dependence of the
correlation length on suggests that this transition corresponds to the
disorder-driven unbinding of vortex pairs.Comment: LaTex file and 18 figure
- …