66 research outputs found

    Metal-Insulator Phase Transition in Quasi-One-Dimensional VO<sub>2</sub>Structures

    Get PDF
    The metal-insulator transition (MIT) in strongly correlated oxides has attracted considerable attention from both theoretical and experimental researchers. Among the strongly correlated oxides, vanadium dioxide (VO2) has been extensively studied in the last decade because of a sharp, reversible change in its optical, electrical, and magnetic properties at approximately 341 K, which would be possible and promising to develop functional devices with advanced technology by utilizing MITs. However, taking the step towards successful commercialization requires the comprehensive understanding of MIT mechanisms, enabling us to manipulate the nature of transitions. In this regard, recently, quasi-one-dimensional (quasi-1D) VO2structures have been intensively investigated due to their attractive geometry and unique physical properties to observe new aspects of transitions compared with their bulk counterparts. Thus, in this review, we will address recent research progress in the development of various approaches for the modification of MITs in quasi-1D VO2structures. Furthermore, we will review recent studies on realizing novel functional devices based on quasi-1D VO2structures for a wide range of applications, such as a gas sensor, a flexible strain sensor, an electrical switch, a thermal memory, and a nonvolatile electrical memory with multiple resistance.</jats:p

    Ferroelectric field effect induced charge carrier transport modulation at quantum dot solar cell heterojunction interface

    Get PDF
    Inherent unidealistic properties associated with materials and device structures inevitably limit the performance of photovoltaic devices. To overcome the inherent limit, judicious use of ferroelectric materials has been introduced. Here, we demonstrate modulations of charge carrier transport at the heterojunction interface with respect to polarities of electric dipoles. Attributed to an additional electric field by the ferroelectric effect, a built-in potential at the junction increases, leading to enhanced charge carrier transport, reduced charge recombination, and, consequently, enhanced power conversion efficiency of lead sulfide quantum dot solar cells. The coupling of the ferroelectric effect with the solar cell provides an important platform to further develop solution-processable flat panel solar cell technology

    Field effect transistors and phototransistors based upon p-type solution-processed PbS nanowires.

    Get PDF
    We demonstrate the fabrication of solution processed highly crystalline p-type PbS nanowires via the oriented attachment of nanoparticles. The analysis of single nanowire field effect transistor (FET) devices revealed a hole conduction behaviour with average mobilities greater than 30 cm2 V-1 s-1, which is an order of magnitude higher than that reported to date for p-type PbS colloidal nanowires. We have investigated the response of the FETs to near-infrared light excitation and show herein that the nanowires exhibited gate-dependent photo-conductivities, enabling us to tune the device performances. The responsivity was found to be greater than 104 A W-1 together with a detectivity of 1013 Jones, which benefits from a photogating effect occurring at negative gate voltages. These encouraging detection parameters are accompanied by relatively short switching times of 15 ms at positive gate voltages, resulting from a combination of the standard photoconduction and the high crystallinity of the nanowires. Collectively, these results indicate that solution-processed PbS nanowires are promising nanomaterials for infrared photodetectors as well as p-type nanowire FETs

    Morphology engineering of self-assembled nanostructured CuCo2O4 anodes for lithium-ion batteries

    Get PDF
    The electrochemical kinetics and output capacity of active electrode materials are significantly influenced by their surface structure. Herein, the template‐free morphological evolution of CuCo2O4 is reported, which is achieved by controlling the nucleation and growth rate during the hydrothermal process and evaluating its anode performance. The charge‐transfer resistance and specific surface area of the fabricated CuCo2O4 anode films are influenced by the viscosity of the solvent used. The optimized mesoporous nanosheet anode exhibits a high specific discharge capacity (1547 mAh g–1) at 0.1 A g–1 and an excellent restoring capability (≈91%); it retains 88% of the initial capacity with a coulombic efficiency of ≈99% even after 250 discharge–charge cycles. The superior lithium‐ion energy storage performance of this anode is due to its electrochemically favorable porous 2D morphology with large Brunauer–Emmett–Teller (BET) specific surface area and pore volume, resulting in enhanced Li+ storage and intercalation property

    Quantum dots for hybrid energy harvesting: from integration to piezo-phototronics

    Get PDF
    Energy harvesting, which converts wasted environmental energy into electricity by utilizing various physical effects, hasattracted tremendous research interests as is one of the key technologies to realize advanced electronics in the future. In this review, we introduce recent progress in the field of hybrid energy harvesting technology. In particular, we focus on a quantum dots (QD)‐based hybrid energy harvesting device. Attributed to fascinating material properties that QD possess, employment of QDs into hybrid energy harvesting has shown great potential for independent and sustainable energy supply.First, an integration of a QD solar cell into a mechanical energy harvester is discussed to harness different types of environmental energy sources simultaneously. Second, a comprehensive explanation of a piezotronic and piezo‐phototronic effect is provided, which is followed by QD‐based piezo‐phototronic applications. Finally, we summarize recent progress that has been made in energy harvesting technology involving a photovoltaic and piezo/triboelectric effec

    Highly Monodispersed PbS Quantum Dots for Outstanding Cascaded-Junction Solar Cells.

    Get PDF
    High-performance cascaded-junction quantum dot solar cells (CJQDSCs) are fabricated from as-prepared highly monodispersed lead sulfide QDs. The cells have a high power conversion of 9.05% and a short-circuit current density of 32.51 mA cm-2. A reliable and effective stratagem for fabricating high-quality lead sulfide quantum dots (QD) is explored through a "monomer" concentration-controlled experiment. Robust QDSC performances with different band gaps are demonstrated from the as-proposed synthesis and processing stratagems. Various potential CJQDSCs can be envisioned from the band edge evolution of the QDs as a function of size and ligands reported here

    Facile electrodeposition of high-density CuCo2O4 nanosheets as a high-performance Li-ion battery anode material

    Get PDF
    High-density CuCo2O4 nanosheets are grown on Ni foam using electrodeposition followed by air annealing for a Li-ion battery anode. The anode exhibits a high discharge capacity of 1244 mAh/g at 0.1 A/g (82% coulombic efficiency) and excellent high-rate performance with 95% capacity retention (1100 mAh/g after 200 cycles at 1 A/g). The outstanding battery performance of the CuCo2O4 anode is attributed to its binder-free direct contact to the current collector and high-density nanosheet morphology. The present experimental findings demonstrate that the electrodeposited binder-free CuCo2O4 material may serve as a safe, low-cost, long-cycle life anode for Li-ion batteries
    corecore