4,975 research outputs found
Third-order optical autocorrelator for time-domain operation at telecommunication wavelengths
We report on amorphous organic thin films that exhibit efficient third-harmonic generation at telecommunication wavelengths. At 1550 nm, micrometer-thick samples generate up to 17 ÂľW of green light with input power of 250 mW delivered by an optical parametric oscillator. This high conversion efficiency is achieved without phase matching or cascading of quadratic nonlinear effects. With these films, we demonstrate a low-cost, sensitive third-order autocorrelator that can be used in the time-frequency domain
Case-based reasoning approach to estimating the strength of sustainable concrete
Continuing from previous studies of sustainable concrete containing environmentally friendly materials and existing modeling approach to predicting concrete properties, this study developed an estimation methodology to predicting the strength of sustainable concrete using an advanced case-based reasoning approach. It was conducted in two steps: (i) establishment of a case database and (ii) development of an advanced case-based reasoning model. Through the experimental studies, a total of 144 observations for concrete compressive strength and tensile strength were established to develop the estimation model. As a result, the prediction accuracy of the A-CBR model (i.e., 95.214% for compressive strength and 92.448% for tensile strength) performed superior to other conventional methodologies (e.g., basic case-based reasoning and artificial neural network models). The developed methodology provides an alternative approach in predicting concrete properties and could be further extended to the future research area in durability of sustainable concrete
Ultrafast-pulse diagnostic using third-order frequency-resolved optical gating in organic films
We report on the diagnostic of ultrafast pulses by frequency-resolved optical gating (FROG) based on strong third-harmonic generation (THG) in amorphous organic thin films. The high THG conversion efficiency of these films allows for the characterization of sub-nanojoule short pulses emitting at telecommunication wavelengths using a low cost portable fiber spectrometer
Divine intervention? A Cochrane review on intercessory prayer gone beyond science and reason
We discuss in this commentary a recent Cochrane review of 10 randomised trials aimed at testing the religious belief that praying to a god can help those who are prayed for. The review concluded that the available studies merit additional research. However, the review presented a scientifically unsound mixture of theological and scientific arguments, and two of the included trials that had a large impact on the findings had problems that were not described in the review. The review fails to live up to the high standards required for Cochrane reviews
An implicit method for radiative transfer with the diffusion approximation in SPH
An implicit method for radiative transfer in SPH is described. The diffusion
approximation is used, and the hydrodynamic calculations are performed by a
fully three--dimensional SPH code. Instead of the energy equation of state for
an ideal gas, various energy states and the dissociation of hydrogen molecules
are considered in the energy calculation for a more realistic temperature and
pressure determination. In order to test the implicit code, we have performed
non--isothermal collapse simulations of a centrally condensed cloud, and have
compared our results with those of finite difference calculations performed by
MB93. The results produced by the two completely different numerical methods
agree well with each other.Comment: 25 pages, 9 figure
Moving Wigner Glasses and Smectics: Dynamics of Disordered Wigner Crystals
We examine the dynamics of driven classical Wigner solids interacting with
quenched disorder from charged impurities. For strong disorder, the initial
motion is plastic -- in the form of crossing winding channels. For increasing
drive, the disordered Wigner glass can reorder to a moving Wigner smectic --
with the electrons moving in non-crossing 1D channels. These different dynamic
phases can be related to the conduction noise and I(V) curves. For strong
disorder, we show criticality in the voltage onset just above depinning. We
also obtain the dynamic phase diagram for driven Wigner solids and prove that
there is a finite threshold for transverse sliding, recently found
experimentally.Comment: 4 pages, 4 postscript figure
Constellations of identity: place-ma(r)king beyond heritage
This paper will critically consider the different ways in which history and belonging have been treated in artworks situated in the Citadel development in Ayr on the West coast of Scotland. It will focus upon one artwork, Constellation by Stephen Hurrel, as an alternative to the more conventional landscapes of heritage which are adjacent, to examine the relationship between personal history and place history and argue the primacy of participatory process in the creation of place and any artwork therein. Through his artwork, Hurrel has attempted to adopt a material process through which place can be created performatively but, in part due to its non-representational form, proves problematic, aesthetically and longitudinally, in wholly engaging the community. The paper will suggest that through variants of ânew genre public artâ such as this, personal and place histories can be actively re-created through the redevelopment of contemporary urban landscapes but also highlight the complexities and indeterminacies involved in the relationship between artwork, people and place
KMT-2016-BLG-2052L: Microlensing Binary Composed of M Dwarfs Revealed from a Very Long Time-scale Event
We present the analysis of a binary microlensing event KMT-2016-BLG-2052, for
which the lensing-induced brightening of the source star lasted for 2 seasons.
We determine the lens mass from the combined measurements of the microlens
parallax \pie and angular Einstein radius \thetae. The measured mass
indicates that the lens is a binary composed of M dwarfs with masses of
and . The measured relative
lens-source proper motion of is smaller
than of typical Galactic lensing events, while
the estimated angular Einstein radius of \thetae\sim 1.2~{\rm mas} is
substantially greater than the typical value of .
Therefore, it turns out that the long time scale of the event is caused by the
combination of the slow and large \thetae rather than the heavy mass of
the lens. From the simulation of Galactic lensing events with very long time
scales ( days), we find that the probabilities that long
time-scale events are produced by lenses with masses and
are and 2.6\%, respectively, indicating that
events produced by heavy lenses comprise a minor fraction of long time-scale
events. The results indicate that it is essential to determine lens masses by
measuring both \pie and \thetae in order to firmly identify heavy stellar
remnants such as neutron stars and black holes.Comment: 9 pages, 11 figure
Derivation of the Semi-circle Law from the Law of Corresponding States
We show that, for the transition between any two quantum Hall states, the
semi-circle law and the existence of a duality symmetry follow solely from the
consistency of the law of corresponding states with the two-dimensional scaling
flow. This puts these two effects on a sound theoretical footing, implying that
both should hold exactly at zero temperature, independently of the details of
the microscopic electron dynamics. This derivation also shows how the
experimental evidence favours taking the two-dimensional flow seriously for the
whole transition, and not just near the critical points.Comment: 4 pages, 1 figure, typeset in LaTeX (uses revtex
- âŚ