8,426 research outputs found

    Prediction of silicon content in hot metal based on golden sine particle swarm optimization and random forest

    Get PDF
    Particle Swarm Optimization (PSO) algorithm quickly falls into local optimum, low precision. In this paper, add the golden sine operation to the particle position update. The results show that the improved PSO algorithm has better optimization ability. The main parameters affecting the silicon content in hot metal are selected. Then, calculate the correlation coefficient and significance level between parameters and silicon content in hot metal. Finally, the prediction model of silicon content in hot metal is established based on the Random Forest (RF) optimized by improved PSO. The results show that the hit rate is 87,17 %

    Prediction of silicon content in hot metal based on golden sine particle swarm optimization and random forest

    Get PDF
    Particle Swarm Optimization (PSO) algorithm quickly falls into local optimum, low precision. In this paper, add the golden sine operation to the particle position update. The results show that the improved PSO algorithm has better optimization ability. The main parameters affecting the silicon content in hot metal are selected. Then, calculate the correlation coefficient and significance level between parameters and silicon content in hot metal. Finally, the prediction model of silicon content in hot metal is established based on the Random Forest (RF) optimized by improved PSO. The results show that the hit rate is 87,17 %

    Effect of nonlinear filters on detrended fluctuation analysis

    Full text link
    We investigate how various linear and nonlinear transformations affect the scaling properties of a signal, using the detrended fluctuation analysis (DFA). Specifically, we study the effect of three types of transforms: linear, nonlinear polynomial and logarithmic filters. We compare the scaling properties of signals before and after the transform. We find that linear filters do not change the correlation properties, while the effect of nonlinear polynomial and logarithmic filters strongly depends on (a) the strength of correlations in the original signal, (b) the power of the polynomial filter and (c) the offset in the logarithmic filter. We further investigate the correlation properties of three analytic functions: exponential, logarithmic, and power-law. While these three functions have in general different correlation properties, we find that there is a broad range of variable values, common for all three functions, where they exhibit identical scaling behavior. We further note that the scaling behavior of a class of other functions can be reduced to these three typical cases. We systematically test the performance of the DFA method in accurately estimating long-range power-law correlations in the output signals for different parameter values in the three types of filters, and the three analytic functions we consider.Comment: 12 pages, 7 figure

    Quantized Dispersion of Two-Dimensional Magnetoplasmons Detected by Photoconductivity Spectroscopy

    Full text link
    We find that the long-wavelength magnetoplasmon, resistively detected by photoconductivity spectroscopy in high-mobility two-dimensional electron systems, deviates from its well-known semiclassical nature as uncovered in conventional absorption experiments. A clear filling-factor dependent plateau-type dispersion is observed that reveals a so far unknown relation between the magnetoplasmon and the quantum Hall effect.Comment: 5 pages, 3 figure

    On-chip Phase Locked Loop (PLL) design for clock multiplier in CMOS Monolithic Active Pixel Sensors (MAPS)

    Get PDF
    In a detector system, clock distribution to sensors must be controlled at a level allowing proper synchronisation. In order to reach theses requirements for the HFT (Heavy Flavor Tracker) upgrade at STAR (Solenoidal Tracker at RHIC), we have proposed to distribute a low frequency clock at 10 MHz which will be multiplied to 160 MHz in each sensor by a PLL. A PLL has been designed for period jitter less than 20 ps rms, low power consumption and manufactured in a 0.35 μm CMOS process

    Far-infrared photo-conductivity of electrons in an array of nano-structured antidots

    Full text link
    We present far-infrared (FIR) photo-conductivity measurements for a two-dimensional electron gas in an array of nano-structured antidots. We detect, resistively and spectrally resolved, both the magnetoplasmon and the edge-magnetoplasmon modes. Temperature-dependent measurements demonstrates that both modes contribute to the photo resistance by heating the electron gas via resonant absorption of the FIR radiation. Influences of spin effect and phonon bands on the collective excitations in the antidot lattice are observed.Comment: 5 pages, 3 figure

    Universality of the Crossing Probability for the Potts Model for q=1,2,3,4

    Full text link
    The universality of the crossing probability πhs\pi_{hs} of a system to percolate only in the horizontal direction, was investigated numerically by using a cluster Monte-Carlo algorithm for the qq-state Potts model for q=2,3,4q=2,3,4 and for percolation q=1q=1. We check the percolation through Fortuin-Kasteleyn clusters near the critical point on the square lattice by using representation of the Potts model as the correlated site-bond percolation model. It was shown that probability of a system to percolate only in the horizontal direction πhs\pi_{hs} has universal form πhs=A(q)Q(z)\pi_{hs}=A(q) Q(z) for q=1,2,3,4q=1,2,3,4 as a function of the scaling variable z=[b(q)L1ν(q)(ppc(q,L))]ζ(q)z= [ b(q)L^{\frac{1}{\nu(q)}}(p-p_{c}(q,L)) ]^{\zeta(q)}. Here, p=1exp(β)p=1-\exp(-\beta) is the probability of a bond to be closed, A(q)A(q) is the nonuniversal crossing amplitude, b(q)b(q) is the nonuniversal metric factor, ζ(q)\zeta(q) is the nonuniversal scaling index, ν(q)\nu(q) is the correlation length index. The universal function Q(x)exp(z)Q(x) \simeq \exp(-z). Nonuniversal scaling factors were found numerically.Comment: 15 pages, 3 figures, revtex4b, (minor errors in text fixed, journal-ref added

    Effect of nonstationarities on detrended fluctuation analysis

    Full text link
    Detrended fluctuation analysis (DFA) is a scaling analysis method used to quantify long-range power-law correlations in signals. Many physical and biological signals are ``noisy'', heterogeneous and exhibit different types of nonstationarities, which can affect the correlation properties of these signals. We systematically study the effects of three types of nonstationarities often encountered in real data. Specifically, we consider nonstationary sequences formed in three ways: (i) stitching together segments of data obtained from discontinuous experimental recordings, or removing some noisy and unreliable parts from continuous recordings and stitching together the remaining parts -- a ``cutting'' procedure commonly used in preparing data prior to signal analysis; (ii) adding to a signal with known correlations a tunable concentration of random outliers or spikes with different amplitude, and (iii) generating a signal comprised of segments with different properties -- e.g. different standard deviations or different correlation exponents. We compare the difference between the scaling results obtained for stationary correlated signals and correlated signals with these three types of nonstationarities.Comment: 17 pages, 10 figures, corrected some typos, added one referenc

    Steady-state visual evoked potentials and phase synchronization in migraine

    Get PDF
    We investigate phase synchronization in EEG recordings from migraine patients. We use the analytic signal technique, based on the Hilbert transform, and find that migraine brains are characterized by enhanced alpha band phase synchronization in presence of visual stimuli. Our findings show that migraine patients have an overactive regulatory mechanism that renders them more sensitive to external stimuli.Comment: 4 page

    Characterization of Sleep Stages by Correlations of Heartbeat Increments

    Full text link
    We study correlation properties of the magnitude and the sign of the increments in the time intervals between successive heartbeats during light sleep, deep sleep, and REM sleep using the detrended fluctuation analysis method. We find short-range anticorrelations in the sign time series, which are strong during deep sleep, weaker during light sleep and even weaker during REM sleep. In contrast, we find long-range positive correlations in the magnitude time series, which are strong during REM sleep and weaker during light sleep. We observe uncorrelated behavior for the magnitude during deep sleep. Since the magnitude series relates to the nonlinear properties of the original time series, while the signs series relates to the linear properties, our findings suggest that the nonlinear properties of the heartbeat dynamics are more pronounced during REM sleep. Thus, the sign and the magnitude series provide information which is useful in distinguishing between the sleep stages.Comment: 7 pages, 4 figures, revte
    corecore