25 research outputs found
Long-term haematopoietic reconstitution by Trp53(-/-)p16(Ink4a-/-)p19(Arf-/-) multipotent progenitors
Haematopoiesis is maintained by a hierarchical system where haematopoietic stem cells ( HSCs) give rise to multipotent progenitors, which in turn differentiate into all types of mature blood cells1. HSCs maintain themselves for the lifetime of the organism because of their ability to self- renew. However, multipotent progenitors lack the ability to self- renew, therefore their mitotic capacity and expansion potential are limited and they are destined to eventually stop proliferating after a finite number of cell divisions(1,2). The molecular mechanisms that limit the proliferation capacity of multipotent progenitors and other more mature progenitors are not fully understood(2,3). Here we show that bone marrow cells from mice deficient in three genes genetically downstream of Bmi1-p16(Ink4a), p19(Arf) and Trp53 ( triple mutant mice; p16(Ink4a) and p19(Arf) are alternative reading frames of the same gene ( also called Cdkn2a) that encode different proteins) - have an approximately 10-fold increase in cells able to reconstitute the blood long term. This increase is associated with the acquisition of long- term reconstitution capacity by cells of the phenotype c-kit(+)Sca-1(+)Flt3(+)CD150(-)CD48(-)Lin(-), which defines multipotent progenitors in wild- type mice(4-6). The pattern of triple mutant multipotent progenitor response to growth factors resembles that of wild- type multipotent progenitors but not wild- type HSCs. These results demonstrate that p16(Ink4a)/p19(Arf) and Trp53 have a central role in limiting the expansion potential of multipotent progenitors. These pathways are commonly repressed in cancer, suggesting a mechanism by which early progenitor cells could gain the ability to self- renew and become malignant with further oncogenic mutations.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62767/1/nature06869.pd
Masting is uncommon in trees that depend on mutualist dispersers in the context of global climate and fertility gradients
The benefits of masting (volatile, quasi-synchronous seed production at lagged intervals) include satiation of seed predators, but these benefits come with a cost to mutualist pollen and seed dispersers. If the evolution of masting represents a balance between these benefits and costs, we expect mast avoidance in species that are heavily reliant on mutualist dispersers. These effects play out in the context of variable climate and site fertility among species that vary widely in nutrient demand. Meta-analyses of published data have focused on variation at the population scale, thus omitting periodicity within trees and synchronicity between trees. From raw data on 12 million tree-years worldwide, we quantified three components of masting that have not previously been analysed together: (i) volatility, defined as the frequency-weighted year-to-year variation; (ii) periodicity, representing the lag between high-seed years; and (iii) synchronicity, indicating the tree-to-tree correlation. Results show that mast avoidance (low volatility and low synchronicity) by species dependent on mutualist dispersers explains more variation than any other effect. Nutrient-demanding species have low volatility, and species that are most common on nutrient-rich and warm/wet sites exhibit short periods. The prevalence of masting in cold/dry sites coincides with climatic conditions where dependence on vertebrate dispersers is less common than in the wet tropics. Mutualist dispersers neutralize the benefits of masting for predator satiation, further balancing the effects of climate, site fertility and nutrient demands
Recommended from our members
Gene methylation parallelisms between peripheral blood cells and oral mucosa samples in relation to overweight
Epigenetics has an important role in the regulation of metabolic adaptation to environmental modifications. In this sense, the determination of epigenetic changes in non-invasive samples during the development of metabolic diseases could play an important role in the procedures in primary healthcare practice. To help translate the knowledge of epigenetics to public health practice, the present study aims to explore the parallelism of methylation levels between white blood cells and buccal samples in relation to obesity and associated disorders. Blood and buccal swap samples were collected from a subsample of the Spanish cohort of the Food4Me study. Infinium HumanMethylation450 DNA Analysis was carried out for the determination of methylation levels. Standard deviation for β values method and concordance correlation analysis were used to select those CpG which showed best parallelism between samples. A total of 277 CpGs met the criteria and were selected for an enrichment analysis and a correlation analysis with anthropometrical and clinical parameters. From those selected CpGs, four presented high associations with BMI (cg01055691 in GAP43; r = -0.92 and rho = -0.84 for blood; r = -0.89 and rho = -0.83 for buccal sample), HOMA-IR (cg00095677 in ATP2A3; r = 0.82 and rho = -0.84 for blood; r = -0.8 and rho = -0.83 for buccal sample) and leptin (cg14464133 in ADARB2; r = -0.9182 and rho = -0.94 for blood; r = -0.893 and rho = -0.79 for buccal sample). These findings demonstrate the potential application of non-invasive buccal samples in the identification of surrogate epigenetic biomarkers and identify methylation sites in GAP43, ATP2A3 and ADARB2 genes as potential targets in relation to overweight management and insulin sensibility