2,044 research outputs found

    The Health Status of a Population estimated: The History of Health State Curves

    Full text link
    Following the recent publication of our book on Exploring the Health State of a Population by Dynamic Modeling Methods in The Springer Series on Demographic Methods and Population Analysis (DOI 10.1007/978-3-319-65142-2) we provide this brief presentation of the main findings and improvements regarding the Health State of a Population. (See at: http://www.springer.com/gp/book/9783319651415). Here the brief history of the Health State or Health Status curves for individuals and populations is presented including the main references and important figures along with an illustrated Poster (see Figure 13 and http://www.smtda.net/demographics2018.html). Although the Survival Curve is known as long as the life tables have introduced, the Health State Curve was calculated after the introduction of the advanced stochastic theory of the first exit time. The health state curve is illustrated in several graphs either as a fit curve to data or produced after a large number of stochastic realizations. The Health State, the Life Expectancy and the age at mean zero health state are also estimated. Keywords: Health State and Survival Curves, Health status of a population, First exit time stochastic theory, stochastic simulations of health state, Age at Maximum Curvature, Healthy Life Expectancy and HALE, Standard Deviation, Health State Curves, Maximum human lifespan and other.Comment: 11 pages, 13 figure

    Nonequilibrium critical dynamics of the two-dimensional Ising model quenched from a correlated initial state

    Full text link
    The universality class, even the order of the transition, of the two-dimensional Ising model depends on the range and the symmetry of the interactions (Onsager model, Baxter-Wu model, Turban model, etc.), but the critical temperature is generally the same due to self-duality. Here we consider a sudden change in the form of the interaction and study the nonequilibrium critical dynamical properties of the nearest-neighbor model. The relaxation of the magnetization and the decay of the autocorrelation function are found to display a power law behavior with characteristic exponents that depend on the universality class of the initial state.Comment: 6 pages, 5 figures, submitted to Phys. Rev.

    Multifractal properties of resistor diode percolation

    Full text link
    Focusing on multifractal properties we investigate electric transport on random resistor diode networks at the phase transition between the non-percolating and the directed percolating phase. Building on first principles such as symmetries and relevance we derive a field theoretic Hamiltonian. Based on this Hamiltonian we determine the multifractal moments of the current distribution that are governed by a family of critical exponents {ψl}\{\psi_l \}. We calculate the family {ψl}\{\psi_l \} to two-loop order in a diagrammatic perturbation calculation augmented by renormalization group methods.Comment: 21 pages, 5 figures, to appear in Phys. Rev.

    Nonminimal Couplings in the Early Universe: Multifield Models of Inflation and the Latest Observations

    Get PDF
    Models of cosmic inflation suggest that our universe underwent an early phase of accelerated expansion, driven by the dynamics of one or more scalar fields. Inflationary models make specific, quantitative predictions for several observable quantities, including particular patterns of temperature anistropies in the cosmic microwave background radiation. Realistic models of high-energy physics include many scalar fields at high energies. Moreover, we may expect these fields to have nonminimal couplings to the spacetime curvature. Such couplings are quite generic, arising as renormalization counterterms when quantizing scalar fields in curved spacetime. In this chapter I review recent research on a general class of multifield inflationary models with nonminimal couplings. Models in this class exhibit a strong attractor behavior: across a wide range of couplings and initial conditions, the fields evolve along a single-field trajectory for most of inflation. Across large regions of phase space and parameter space, therefore, models in this general class yield robust predictions for observable quantities that fall squarely within the "sweet spot" of recent observations.Comment: 17pp, 2 figs. References added to match the published version. Published in {\it At the Frontier of Spacetime: Scalar-Tensor Theory, Bell's Inequality, Mach's Principle, Exotic Smoothness}, ed. T. Asselmeyer-Maluga (Springer, 2016), pp. 41-57, in honor of Carl Brans's 80th birthda

    One is not the other:Predicting offending after discharge from secure residential care of male adolescents with four risk profiles

    Get PDF
    Purpose: Adolescents who are admitted to secure residential care have a high risk of delinquency after discharge. However, this risk may differ between subgroups in this heterogeneous population of adolescents with severe psychiatric problems and disruptive problem behaviour. In this study, the predictive validity of four risk profiles was examined for the number of minor, moderate, and severe offences after discharge from secure residential care.Methods: The sample comprised 238 male former patients of a hospital for youth forensic psychiatry and orthopsychiatry in the Netherlands. In three Poisson regression analyses, the relationship between four previously identified risk profiles and the number of minor, moderate, and severe offences after discharge was examined.Results: The results showed that the four risk profiles differed significantly in the number of minor, moderate, and severe offences after discharge. Post hoc analysis revealed no mediating effect of termination of treatment on the relationship between the risk profiles and the number of minor, moderate, and severe offending after discharge.Conclusion: Adolescents with many risk factors in multiple domains and adolescents with mainly family risks have an increased risk of persistent delinquency after discharge. Treatment should be tailored more effectively to the specific risks and needs of these adolescents

    Parameter selection for peak alignment in chromatographic sample profiling: objective quality indicators and use of control samples

    Get PDF
    In chromatographic profiling applications, peak alignment is often essential as most chromatographic systems exhibit small peak shifts over time. When using currently available alignment algorithms, there are several parameters that determine the outcome of the alignment process. Selecting the optimum set of parameters, however, is not straightforward, and the quality of an alignment result is at least partly determined by subjective decisions. Here, we demonstrate a new strategy to objectively determine the quality of an alignment result. This strategy makes use of a set of control samples that are analysed both spiked and non-spiked. With this set, not only the system and the method can be checked but also the quality of the peak alignment can be evaluated. The developed strategy was tested on a representative metabolomics data set using three software packages, namely Markerlynx™, MZmine and MetAlign. The results indicate that the method was able to assess and define the quality of an alignment process without any subjective interference of the analyst, making the method a valuable contribution to the data handling process of chromatography-based metabolomics data

    Cmos Programmable Time Control Circuit Design For Phased Array Uwb Ground Penetrating Radar Antenna Beamforming

    Get PDF
    Phased array radar systems employ multiple antennas to create a radar beam that can be steered electronically. By manipulating the relative phase values of feeding signals among different antennas, the effective radiation pattern of the array can be synthesized to enhance the main lobe in a desired direction while suppressing the undesired side lobes in other directions. Hence the radar scanning angles can be electronically controlled without employing the bulky mechanical gimbal structure, which can significantly reduce radar system size, weight and power consumption. In recent years, phased array technologies have received great attentions and are explored in developing many new applications, such as smart communication systems, military radars, vehicular radar, etc. Most of these systems are narrow band systems, where the phase delays are realized with narrow band phase shifter circuits. For the impulse ground penetrating radar however, its operating frequency spans an ultrawide bandwidth. Therefore the traditional phase shifters are not applicable due to their narrow band nature. To resolve the issue, in this study, a true time delay approach is explored which can precisely control time delays for the feeding pulse signals among different antennas in the array. In the design, an on chip programmable delay generator is being developed using Global Foundry 0.18 µm 7 HV high voltage CMOS process. The time delay control is realized by designing a programmable phase locked loop (PLL) circuit which can generate true time delays ranging from 100 ps (picoseconds) to 500 ps with the step size of 25 ps. The PLL oscillator\u27s frequency is programmable from 100MHz to 500MHz through two reconfigurable frequency dividers in the feedback loop. As a result, the antenna beam angle can be synthesized to change from 9.59° to 56.4° with a step of 2.75°, and the 3dB beamwidth is 10°. The power consumption of the time delay circuit is very low, where the supply voltage is 1.8V and the average current is as low as 472uA

    Antikaon production in nucleon-nucleon reactions near threshold

    Get PDF
    The antikaon production cross section from nucleon-nucleon reactions near threshold is studied in a meson exchange model. We include both pion and kaon exchange, but neglect the interference between the amplitudes. In case of pion exchange the antikaon production cross section can be expressed in terms of the antikaon production cross section from a pion-nucleon interaction, which we take from the experimental data if available. Otherwise, a KK^*-resonance exchange model is introduced to relate the different reaction cross sections. In case of kaon exchange the antikaon production cross section is related to the elastic KNKN and KˉN\bar KN cross sections, which are again taken from experimental measurements. We find that the one-meson exchange model gives a satisfactory fit to the available data for the NNNNKKˉNN\to NNK\bar K cross section at high energies. We compare our predictions for the cross section near threshold with an earlier empirical parameterization and that from phase space models.Comment: 16 pages, LaTeX, 5 postscript figures included, submitted to Z. Phys.

    Bounds on Integrals of the Wigner Function

    Get PDF
    The integral of the Wigner function over a subregion of the phase-space of a quantum system may be less than zero or greater than one. It is shown that for systems with one degree of freedom, the problem of determining the best possible upper and lower bounds on such an integral, over all possible states, reduces to the problem of finding the greatest and least eigenvalues of an hermitian operator corresponding to the subregion. The problem is solved exactly in the case of an arbitrary elliptical region. These bounds provide checks on experimentally measured quasiprobability distributions.Comment: 10 pages, 1 PostScript figure, Latex file; revised following referees' comments; to appear in Physical Review Letter

    Coherent quantum transport in narrow constrictions in the presence of a finite-range longitudinally polarized time-dependent field

    Full text link
    We have studied the quantum transport in a narrow constriction acted upon by a finite-range longitudinally polarized time-dependent electric field. The electric field induces coherent inelastic scatterings which involve both intra-subband and inter-sideband transitions. Subsequently, the dc conductance G is found to exhibit suppressed features. These features are recognized as the quasi-bound-state (QBS) features which are associated with electrons making transitions to the vicinity of a subband bottom, of which the density of states is singular. Having valley-like instead of dip-like structures, these QBS features are different from the G characteristics for constrictions acted upon by a finite-range time-modulated potential. In addition, the subband bottoms in the time-dependent electric field region are shifted upward by an energy proportional to the square of the electric field and inversely proportional to the square of the frequency. This effective potential barrier is originated from the square of the vector potential and it leads to the interesting field-sensitive QBS features. An experimental set-up is proposed for the observation of these features.Comment: 8 pages, 4 figure
    corecore