25 research outputs found

    Defining Global Gene Expression Changes of the Hypothalamic-Pituitary-Gonadal Axis in Female sGnRH-Antisense Transgenic Common Carp (Cyprinus carpio)

    Get PDF
    BACKGROUND: The hypothalamic-pituitary-gonadal (HPG) axis is critical in the development and regulation of reproduction in fish. The inhibition of neuropeptide gonadotropin-releasing hormone (GnRH) expression may diminish or severely hamper gonadal development due to it being the key regulator of the axis, and then provide a model for the comprehensive study of the expression patterns of genes with respect to the fish reproductive system. METHODOLOGY/PRINCIPAL FINDINGS: In a previous study we injected 342 fertilized eggs from the common carp (Cyprinus carpio) with a gene construct that expressed antisense sGnRH. Four years later, we found a total of 38 transgenic fish with abnormal or missing gonads. From this group we selected the 12 sterile females with abnormal ovaries in which we combined suppression subtractive hybridization (SSH) and cDNA microarray analysis to define changes in gene expression of the HPG axis in the present study. As a result, nine, 28, and 212 genes were separately identified as being differentially expressed in hypothalamus, pituitary, and ovary, of which 87 genes were novel. The number of down- and up-regulated genes was five and four (hypothalamus), 16 and 12 (pituitary), 119 and 93 (ovary), respectively. Functional analyses showed that these genes involved in several biological processes, such as biosynthesis, organogenesis, metabolism pathways, immune systems, transport links, and apoptosis. Within these categories, significant genes for neuropeptides, gonadotropins, metabolic, oogenesis and inflammatory factors were identified. CONCLUSIONS/SIGNIFICANCE: This study indicated the progressive scaling-up effect of hypothalamic sGnRH antisense on the pituitary and ovary receptors of female carp and provided comprehensive data with respect to global changes in gene expression throughout the HPG signaling pathway, contributing towards improving our understanding of the molecular mechanisms and regulative pathways in the reproductive system of teleost fish

    Genetic basis and biotechnological manipulation of sexual dimorphism and sex determination in fish

    Full text link

    Duplicated phosphoglucose isomerase genes in avocado

    No full text

    Creatine loading and resting skeletal muscle phosphocreatine flux: a saturation-transfer NMR study.

    No full text
    31P saturation-transfer nuclear magnetic resonance spectroscopy was used to study skeletal muscle phosphocreatine (PCr) flux in healthy male volunteers. Data analysis included consideration of effects from incomplete saturation and radiofrequency spillover. Spectra were recorded from the resting gastrocnemius muscle before and after 6 days of creatine monohydrate (Cr-H2O) intake (20 g/day). Parallel to an improved muscle performance during maximal intermittent exercise following Cr-H2O supplementation, the concentration of PCr increased (P=0.01) by 23% (34.9+/-2.8 mmol/l vs. 28.6+/-2.7 mmol/l), whereas other metabolites were unaffected (inorganic phosphate: 4.3+/-1.4 mmol/l, free intracellular Mg(2+): 1.1+/-0.7 mmol/l, cytosolic pH: 7.04+/-0.02). Forward and reverse fluxes through the creatine kinase (CK) reaction did not change significantly from their baseline levels (v(for): 11.8+/-5.4 mmol/l per second vs. 15.3+/-6.8 mmol/l per second, (v(rev): 9.5+/-3.4 mmol/l per second vs. 10.9+/-3.7 mmol/l per second). The rate of PCr resynthesis in resting muscle is not limited by the CK reaction, which is near equilibrium. Consequently, the post-load increase in total creatine has no effect on the unidirectional CK reaction rates
    corecore