70 research outputs found

    Optimal static and dynamic recycling of defective binary devices

    Full text link
    The binary Defect Combination Problem consists in finding a fully working subset from a given ensemble of imperfect binary components. We determine the typical properties of the model using methods of statistical mechanics, in particular, the region in the parameter space where there is almost surely at least one fully-working subset. Dynamic recycling of a flux of imperfect binary components leads to zero wastage.Comment: 14 pages, 15 figure

    Generating and probing a two-photon Fock state with a single atom in a cavity

    Get PDF
    A two-photon Fock state is prepared in a cavity sustaining a "source mode " and a "target mode", with a single circular Rydberg atom. In a third-order Raman process, the atom emits a photon in the target while scattering one photon from the source into the target. The final two-photon state is probed by measuring by Ramsey interferometry the cavity light shifts induced by the target field on the same atom. Extensions to other multi-photon processes and to a new type of micromaser are briefly discussed

    Evolution of Linear Absorption and Nonlinear Optical Properties in V-Shaped Ruthenium(II)-Based Chromophores

    Get PDF
    In this article, we describe a series of complexes with electron-rich cis-{Ru^(II)(NH_3)_4}^(2+) centers coordinated to two pyridyl ligands bearing N-methyl/arylpyridinium electron-acceptor groups. These V-shaped dipolar species are new, extended members of a class of chromophores first reported by us (Coe, B. J. et al. J. Am. Chem. Soc. 2005, 127, 4845−4859). They have been isolated as their PF_6− salts and characterized by using various techniques including ^1H NMR and electronic absorption spectroscopies and cyclic voltammetry. Reversible Ru^(III/II) waves show that the new complexes are potentially redox-switchable chromophores. Single crystal X-ray structures have been obtained for four complex salts; three of these crystallize noncentrosymmetrically, but with the individual molecular dipoles aligned largely antiparallel. Very large molecular first hyperpolarizabilities β have been determined by using hyper-Rayleigh scattering (HRS) with an 800 nm laser and also via Stark (electroabsorption) spectroscopic studies on the intense, visible d → π^* metal-to-ligand charge-transfer (MLCT) and π → π^* intraligand charge-transfer (ILCT) bands. The latter measurements afford total nonresonant β_0 responses as high as ca. 600 × 10^(−30) esu. These pseudo-C_(2v) chromophores show two substantial components of the β tensor, β_(zzz) and β_(zyy), although the relative significance of these varies with the physical method applied. According to HRS, β_(zzz) dominates in all cases, whereas the Stark analyses indicate that β_(zyy) is dominant in the shorter chromophores, but β_(zzz) and β_(zyy) are similar for the extended species. In contrast, finite field calculations predict that β_(zyy) is always the major component. Time-dependent density functional theory calculations predict increasing ILCT character for the nominally MLCT transitions and accompanying blue-shifts of the visible absorptions, as the ligand π-systems are extended. Such unusual behavior has also been observed with related 1D complexes (Coe, B. J. et al. J. Am. Chem. Soc. 2004, 126, 3880−3891)

    Coordinately Regulated Alternative Splicing of Genes Involved in Cholesterol Biosynthesis and Uptake

    Get PDF
    Genes involved in cholesterol biosynthesis and uptake are transcriptionally regulated in response to cellular sterol content in a coordinated manner. A number of these genes, including 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) and LDL receptor (LDLR), undergo alternative splicing, resulting in reductions of enzyme or protein activity. Here we demonstrate that cellular sterol depletion suppresses, and sterol loading induces, alternative splicing of multiple genes involved in the maintenance of cholesterol homeostasis including HMGCR and LDLR, the key regulators of cellular cholesterol biosynthesis and uptake, respectively. These changes were observed in both in vitro studies of the HepG2 human hepatoma derived cell line, as well as in vivo studies of St. Kitts vervets, also known as African green monkeys, a commonly used primate model for investigating cholesterol metabolism. These effects are mediated in part by sterol regulation of polypyrimidine tract binding protein 1 (PTBP1), since knock-down of PTBP1 eliminates sterol induced changes in alternative splicing of several of these genes. Single nucleotide polymorphisms (SNPs) that influence HMGCR and LDLR alternative splicing (rs3846662 and rs688, respectively), have been associated with variation in plasma LDL-cholesterol levels. Sterol-induced changes in alternative splicing are blunted in carriers of the minor alleles for each of these SNPs, indicating an interaction between genetic and non-genetic regulation of this process. Our results implicate alternative splicing as a novel mechanism of enhancing the robust transcriptional response to conditions of cellular cholesterol depletion or accumulation. Thus coordinated regulation of alternative splicing may contribute to cellular cholesterol homeostasis as well as plasma LDL levels

    VII. Histoire

    No full text
    Thévenin Marcel, Bémont Charles, Reuss Rodolphe, Lot Ferdinand, Poupardin René, Barrau-Dihigo Louis, Brunel Ch., Prinet Max. VII. Histoire. In: École pratique des hautes études, Section des sciences historiques et philologiques. Annuaire 1922-1923. 1922. pp. 35-40

    VII. Histoire

    No full text
    Thévenin Marcel, Bémont Charles, Reuss Rodolphe, Lot Ferdinand, Poupardin René, Barrau-Dihigo Louis, Brunel Ch., Prinet Max. VII. Histoire. In: École pratique des hautes études, Section des sciences historiques et philologiques. Annuaire 1922-1923. 1922. pp. 35-40
    • …
    corecore