598 research outputs found
Superconductivity and Quantum Spin Disorder in Cuprates
A fundamental connection between superconductivity and quantum spin
fluctuations in underdoped cuprates, is revealed. A variational calculation
shows that {\em Cooper pair hopping} strongly reduces the local magnetization
. This effect pertains to recent neutron scattering and muon spin rotation
measurements in which varies weakly with hole doping in the poorly
conducting regime, but drops precipitously above the onset of
superconductivity
Designing spin-1 lattice models using polar molecules
We describe how to design a large class of always on spin-1 interactions
between polar molecules trapped in an optical lattice. The spin degrees of
freedom correspond to the hyperfine levels of a ro-vibrational ground state
molecule. Interactions are induced using a microwave field to mix ground states
in one hyperfine manifold with the spin entangled dipole-dipole coupled excited
states. Using multiple fields anistropic models in one, two, or three
dimensions, can be built with tunable spatial range. An illustrative example in
one dimension is the generalized Haldane model, which at a specific parameter
has a gapped valence bond solid ground state. The interaction strengths are
large compared to decoherence rates and should allow for probing the rich phase
structure of strongly correlated systems, including dimerized and gapped
phases.Comment: 24 pages, 5 figure
Trapped Rydberg Ions: From Spin Chains to Fast Quantum Gates
We study the dynamics of Rydberg ions trapped in a linear Paul trap, and
discuss the properties of ionic Rydberg states in the presence of the static
and time-dependent electric fields constituting the trap. The interactions in a
system of many ions are investigated and coupled equations of the internal
electronic states and the external oscillator modes of a linear ion chain are
derived. We show that strong dipole-dipole interactions among the ions can be
achieved by microwave dressing fields. Using low-angular momentum states with
large quantum defect the internal dynamics can be mapped onto an effective spin
model of a pair of dressed Rydberg states that describes the dynamics of
Rydberg excitations in the ion crystal. We demonstrate that excitation transfer
through the ion chain can be achieved on a nanosecond timescale and discuss the
implementation of a fast two-qubit gate in the ion chain.Comment: 26 pages, 9 figure
Assisted evolution enables HIV-1 to overcome a high trim5α-imposed genetic barrier to rhesus macaque tropism
Diversification of antiretroviral factors during host evolution has erected formidable barriers to cross-species retrovirus transmission. This phenomenon likely protects humans from infection by many modern retroviruses, but it has also impaired the development of primate models of HIV-1 infection. Indeed, rhesus macaques are resistant to HIV-1, in part due to restriction imposed by the TRIM5α protein (rhTRIM5α). Initially, we attempted to derive rhTRIM5α-resistant HIV-1 strains using two strategies. First, HIV-1 was passaged in engineered human cells expressing rhTRIM5α. Second, a library of randomly mutagenized capsid protein (CA) sequences was screened for mutations that reduced rhTRIM5α sensitivity. Both approaches identified several individual mutations in CA that reduced rhTRIM5α sensitivity. However, neither approach yielded mutants that were fully resistant, perhaps because the locations of the mutations suggested that TRIM5α recognizes multiple determinants on the capsid surface. Moreover, even though additive effects of various CA mutations on HIV-1 resistance to rhTRIM5α were observed, combinations that gave full resistance were highly detrimental to fitness. Therefore, we employed an 'assisted evolution' approach in which individual CA mutations that reduced rhTRIM5α sensitivity without fitness penalties were randomly assorted in a library of viral clones containing synthetic CA sequences. Subsequent passage of the viral library in rhTRIM5α-expressing cells resulted in the selection of individual viral species that were fully fit and resistant to rhTRIM5α. These viruses encoded combinations of five mutations in CA that conferred complete or near complete resistance to the disruptive effects of rhTRIM5α on incoming viral cores, by abolishing recognition of the viral capsid. Importantly, HIV-1 variants encoding these CA substitutions and SIVmac239 Vif replicated efficiently in primary rhesus macaque lymphocytes. These findings demonstrate that rhTRIM5α is difficult to but not impossible to evade, and doing so should facilitate the development of primate models of HIV-1 infection
Theoretical study of lepton events in the atmospheric neutrino experiments at SuperK
Super-Kamiokande has reported the results for the lepton events in the
atmospheric neutrino experiment. These results have been presented for a 22.5kT
water fiducial mass on an exposure of 1489 days, and the events are divided
into sub-GeV, multi-GeV and PC events. We present a study of nuclear medium
effects in the sub-GeV energy region of atmospheric neutrino events for the
quasielastic scattering, incoherent and coherent pion production processes, as
they give the most dominant contribution to the lepton events in this energy
region. We have used the atmospheric neutrino flux given by Honda et al. These
calculations have been done in the local density approximation. We take into
account the effect of Pauli blocking, Fermi motion, Coulomb effect,
renormalization of weak transition strengths in the nuclear medium in the case
of the quasielastic reactions. The inelastic reactions leading to production of
leptons along with pions is calculated in a - dominance model by
taking into account the renormalization of properties in the nuclear
medium and the final state interaction effects of the outgoing pions with the
residual nucleus. We present the results for the lepton events obtained in our
model with and without nuclear medium effects, and compare them with the Monte
Carlo predictions used in the simulation and the experimentally observed events
reported by the Super-Kamiokande collaboration.Comment: 23 pages, 13 figure
Polarization transfer in the O reaction at forward angles and structure of the spin-dipole resonances
Cross sections and polarization transfer observables in the O
reactions at 392 MeV were measured at several angles between
0 and 14. The non-spin-flip () and spin-flip
() strengths in transitions to several discrete states and broad
resonances in O were extracted using a model-independent method. The
giant resonances in the energy region of 27 MeV were found to be
predominantly excited by transitions. The strength distribution
of spin-dipole transitions with and were deduced.
The obtained distribution was compared with a recent shell model calculation.
Experimental results are reasonably explained by distorted-wave impulse
approximation calculations with the shell model wave functions.Comment: 28 pages RevTex, including 9 figures, to be published in Phys. Rev.
C.; a typo in Eq. (3b) was correcte
Alveolar soft part sarcoma: clinicopathological findings in a series of 11 cases
<p>Abstract</p> <p>Background</p> <p>Alveolar sarcoma of the soft parts (ASPS) represents a very rare entity of soft tissue sarcoma with special features such as young peak age incidence and frequent metastasis to the brain. The aim of this study was a clinicopathological analysis with special reference to treatment and outcome.</p> <p>Methods</p> <p>From the database of the BG-University Hospital Bergmannsheil, 1597 soft tissue sarcoma (STS) cases were reviewed and 11 consecutive patients with ASPS were isolated. Data was acquired from patients' charts and contact to patients, their relatives or general practitioners, with special reference to treatment and clinical course. The average follow up time from the time of the definite operation for the primary tumor was 6.5 years. Kaplan-Meier method was used to calculate survival.</p> <p>Results</p> <p>Patients with localized disease who received complete resection and adjuvant radiation and who did not develop recurrence or metastatic disease within 2 years after surgery had a positive outcome. The size of the tumor, its localization, and the time of untreated growth before treatment did not influence the long-term results. All patients who developed recurrent disease also suffered from distant metastasis, reflecting the aggressive biology of the tumor. All patients with distant metastasis had the lungs and the brain affected.</p> <p>Conclusion</p> <p>Due to the limited number of patients with ASPS, prospective studies would have to span decades to gather a significant collective of patients; therefore, it is not possible to comment meaningfully on a possible benefit of neoadjuvant or adjuvant therapy.</p> <p>We recommend wide surgical excision and, in the absence of data telling otherwise, adjuvant radiation. In cases with recurrent disease or metastasis, the prognosis is bad and further treatment will be restricted to palliation in most cases.</p
Two-Particle-Self-Consistent Approach for the Hubbard Model
Even at weak to intermediate coupling, the Hubbard model poses a formidable
challenge. In two dimensions in particular, standard methods such as the Random
Phase Approximation are no longer valid since they predict a finite temperature
antiferromagnetic phase transition prohibited by the Mermin-Wagner theorem. The
Two-Particle-Self-Consistent (TPSC) approach satisfies that theorem as well as
particle conservation, the Pauli principle, the local moment and local charge
sum rules. The self-energy formula does not assume a Migdal theorem. There is
consistency between one- and two-particle quantities. Internal accuracy checks
allow one to test the limits of validity of TPSC. Here I present a pedagogical
review of TPSC along with a short summary of existing results and two case
studies: a) the opening of a pseudogap in two dimensions when the correlation
length is larger than the thermal de Broglie wavelength, and b) the conditions
for the appearance of d-wave superconductivity in the two-dimensional Hubbard
model.Comment: Chapter in "Theoretical methods for Strongly Correlated Systems",
Edited by A. Avella and F. Mancini, Springer Verlag, (2011) 55 pages.
Misprint in Eq.(23) corrected (thanks D. Bergeron
Comparison between Culture Conditions Improving Growth and Differentiation of Blood and Bone Marrow Cells Committed to the Endothelial Cell Lineage
The aim of this study was to compare different cell sources and culture conditions to obtain endothelial progenitor cells (EPCs) with predictable antigen pattern, proliferation potential and in vitro vasculogenesis. Pig mononuclear cells were isolated from blood (PBMCs) and bone marrow (BMMCs). Mesenchymal stem cells (MSCs) were also derived from pig bone marrow. Cells were cultured on fibronectin in the presence of a high concentration of VEGF and low IGF-1 and FGF-2 levels, or on gelatin with a lower amount of VEGF and higher IGF-1 and FGF-2 concentrations. Endothelial commitment was relieved in almost all PBMCs and BMMCs irrespective of the protocol used, whilst MSCs did not express a reliable pattern of EPC markers under these conditions. BMMCs were more prone to expand on gelatin and showed a better viability than PBMCs. Moreover, about 90% of the BMMCs pre-cultured on gelatin could adhere to a hyaluronan-based scaffold and proliferate on it up to 3 days. Pre-treatment of BMMCs on fibronectin generated well-shaped tubular structures on Matrigel, whilst BMMCs exposed to the gelatin culture condition were less prone to form vessel-like structures. MSCs formed rough tubule-like structures, irrespective of the differentiating condition used. In a relative short time, pig BMMCs could be expanded on gelatin better than PBMCs, in the presence of a low amount of VEGF. BMMCs could better specialize for capillary formation in the presence of fibronectin and an elevated concentration of VEGF, whilst pig MSCs anyway showed a limited capability to differentiate into the endothelial cell lineage
Combined effect of regulatory polymorphisms on transcription of UGT1A1 as a cause of Gilbert syndrome
<p>Abstract</p> <p>Background</p> <p>Gilbert syndrome is caused by defects in bilirubin UDP-glucuronosyltransferase (UGT1A1). The most common variation believed to be involved is A(TA)7TAA. Although several polymorphisms have been found to link with A(TA)7TAA, the combined effect of regulatory polymorphisms in the development of Gilbert syndrome remains unclear.</p> <p>Methods</p> <p>In an analysis of 15 patients and 60 normal subjects, we detected 14 polymorphisms and nine haplotypes in the regulatory region. We classified the 4-kbp regulatory region of the patients into: the TATA box including A(TA)7TAA; a phenobarbital responsive enhancer module including c.-3275T>G; and a region including other ten linked polymorphisms. The effect on transcription of these polymorphisms was studied.</p> <p>Results</p> <p>All haplotypes with A(TA)7TAA had c.-3275T>G and additional polymorphisms. In an <it>in-vitro </it>expression study of the 4-kbp regulatory region, A(TA)7TAA alone did not significantly reduce transcription. In contrast, c.-3275T>G reduced transcription to 69% of that of wild type, and the linked polymorphisms reduced transcription to 88% of wild type. Transcription of the typical regulatory region of the patients was 56% of wild type. Co-expression of constitutive androstane receptor (CAR) increased the transcription of wild type by a factor of 4.3. Each polymorphism by itself did not reduce transcription to the level of the patients, however, even in the presence of CAR.</p> <p>Conclusions</p> <p>These results imply that co-operation of A(TA)7TAA, c.-3275T>G and the linked polymorphisms is necessary in causing Gilbert syndrome.</p
- …