1,299 research outputs found

    Lepton Mass Effects in Single Pion Production by Neutrinos

    Full text link
    We reconsider the Feynman-Kislinger-Ravndal model applied to neutrino-excitation of baryon resonances. The effects of lepton mass are included, using the formalism of Kuzmin, Lyubushkin and Naumov. In addition we take account of the pion-pole contribution to the hadronic axial vector current. Application of this new formalism to the reaction nu(mu) + p --> mu + Delta at E(nu) approx 1 GeV gives a suppressed cross section at small angles, in agreement with the screening correction in Adler's forward scattering theorem. Application to the process nu(tau) + p --> tau + Delta at E(nu) approx 7 GeV leads to the prediction of right-handed tau polarization for forward-going leptons, in line with a calculation based on an isobar model. Our formalism represents an improved version of the Rein-Sehgal model, incorporating lepton mass effects in a manner consistent with PCAC.Comment: 14 pages, 5 figures. Typos in eq. 9 and 27 corrected. Numbers in table I for coherent cross sections (RSA and RSC) corrected (normalization error). Figs 3 and 4 changed accordingly. These corrections also apply to the published version PRD 76, 113004 (2007

    The Significance of the CC-Numerical Range and the Local CC-Numerical Range in Quantum Control and Quantum Information

    Full text link
    This paper shows how C-numerical-range related new strucures may arise from practical problems in quantum control--and vice versa, how an understanding of these structures helps to tackle hot topics in quantum information. We start out with an overview on the role of C-numerical ranges in current research problems in quantum theory: the quantum mechanical task of maximising the projection of a point on the unitary orbit of an initial state onto a target state C relates to the C-numerical radius of A via maximising the trace function |\tr \{C^\dagger UAU^\dagger\}|. In quantum control of n qubits one may be interested (i) in having U\in SU(2^n) for the entire dynamics, or (ii) in restricting the dynamics to {\em local} operations on each qubit, i.e. to the n-fold tensor product SU(2)\otimes SU(2)\otimes >...\otimes SU(2). Interestingly, the latter then leads to a novel entity, the {\em local} C-numerical range W_{\rm loc}(C,A), whose intricate geometry is neither star-shaped nor simply connected in contrast to the conventional C-numerical range. This is shown in the accompanying paper (math-ph/0702005). We present novel applications of the C-numerical range in quantum control assisted by gradient flows on the local unitary group: (1) they serve as powerful tools for deciding whether a quantum interaction can be inverted in time (in a sense generalising Hahn's famous spin echo); (2) they allow for optimising witnesses of quantum entanglement. We conclude by relating the relative C-numerical range to problems of constrained quantum optimisation, for which we also give Lagrange-type gradient flow algorithms.Comment: update relating to math-ph/070200

    Noise Effects on the Complex Patterns of Abnormal Heartbeats

    Full text link
    Patients at high risk for sudden death often exhibit complex heart rhythms in which abnormal heartbeats are interspersed with normal heartbeats. We analyze such a complex rhythm in a single patient over a 12-hour period and show that the rhythm can be described by a theoretical model consisting of two interacting oscillators with stochastic elements. By varying the magnitude of the noise, we show that for an intermediate level of noise, the model gives best agreement with key statistical features of the dynamics.Comment: 4 pages, 4 figures, RevTe

    Quantum mechanics of a free particle on a pointed plane revisited

    Full text link
    The detailed study of a quantum free particle on a pointed plane is performed. It is shown that there is no problem with a mysterious ``quantum anticentrifugal force" acting on a free particle on a plane discussed in a very recent paper: M. A. Cirone et al, Phys. Rev. A 65, 022101 (2002), but we deal with a purely topological efect related to distinguishing a point on a plane. The new results are introduced concerning self-adjoint extensions of operators describing the free particle on a pointed plane as well as the role played by discrete symmetries in the analysis of such extensions.Comment: 4 figure

    Comparison of Isoscalar Vector Meson Production Cross Sections in Proton-Proton Collisions

    Get PDF
    The reaction ppppω pp\to pp\bf \omega was investigated with the TOF spectrometer, which is an external experiment at the accelerator COSY (Forschungszentrum J\"ulich, Germany). Total as well as differential cross sections were determined at an excess energy of 93MeV93 MeV (pbeam=2950MeV/cp_{beam}=2950 MeV/c). Using the total cross section of (9.0±0.7±1.1)μb(9.0\pm 0.7 \pm1.1) \mu b for the reaction ppppω pp\to pp\omega determined here and existing data for the reaction ppppϕpp\to pp\bf \phi, the ratio Rϕ/ω=σϕ/σω\mathcal{R}_{\phi/\omega}=\sigma_\phi/\sigma_\omega turns out to be significantly larger than expected by the Okubo-Zweig-Iizuka (OZI) rule. The uncertainty of this ratio is considerably smaller than in previous determinations. The differential distributions show that the ω\omega production is still dominated by S-wave production at this excess energy, however higher partial waves clearly contribute. A comparison of the measured angular distributions for ω\omega production to published distributions for ϕ\phi production at 83MeV83 MeV shows that the data are consistent with an identical production mechanism for both vector mesons

    Production of ω\omega mesons in proton-proton collisions

    Get PDF
    The cross section for the production of ω\omega mesons in proton-proton collisions has been measured in a previously unexplored region of incident energies. Cross sections were extracted at 92 MeV and 173 MeV excess energy, respectively. The angular distribution of the ω\omega at ϵ\epsilon=173 MeV is strongly anisotropic, demonstrating the importance of partial waves beyond pure s-wave production at this energy.Comment: 12 pages, 4 figures submitted to Physics Letters B v2: figure 1 added, discussion detailing the data analysis, figure 3 (fig. 2 in v1) modified in line styles and systematic errors displayed on dat
    corecore