48 research outputs found

    Neutron star properties in the Thomas-Fermi model

    Get PDF
    The modern nucleon-nucleon interaction of Myers and Swiatecki, adjusted to the properties of finite nuclei, the parameters of the mass formula, and the behavior of the optical potential is used to calculate the properties of β\beta--equilibrated neutron star matter, and to study the impact of this equation of state on the properties of (rapidly rotating) neutron stars and their cooling behavior. The results are in excellent agreement with the outcome of calculations performed for a broad collection of sophisticated nonrelativistic as well as relativistic models for the equation of state.Comment: 23 pages, LaTeX, 15 ps-figure

    Brightness constraint for cooling models of young neutron stars

    Full text link
    We study the systematics of neutron star cooling curves with three representative masses from the most populated interval of the estimated mass distribution for compact objects. The cooling simulations are made in the framework of the nuclear medium cooling (NMC) scenario using different combinations of possible nucleon-nucleon pairing gaps. Possible heating or enhanced cooling mechanisms in the crust are not considered. We define a constraint on the highest possible temperatures for a given age of young neutron stars and show that this limits the freedom of modeling pairing gaps and crust properties.Comment: 13 pages 2 figures 1 tabl

    Rearrangement of the Fermi Surface of Dense Neutron Matter and Direct Urca Cooling of Neutron Stars

    Get PDF
    It is proposed that a rearrangement of single-particle degrees of freedom may occur in a portion of the quantum fluid interior of a neutron star. Such a rearrangement is associated with the pronounced softening of the spin-isospin collective mode which, under increasing density, leads to pion condensation. Arguments and estimates based on fundamental relations of many-body theory show that one realization of this phenomenon could produce very rapid cooling of the star via a direct nucelon Urca process displaying a T5T^5 dependence on temperature.Comment: 8 pages, 2 figure

    Electronic bulk and domain wall properties in B-site doped hexagonal ErMnO3_3

    Get PDF
    Acceptor and donor doping is a standard for tailoring semiconductors. More recently, doping was adapted to optimize the behavior at ferroelectric domain walls. In contrast to more than a century of research on semiconductors, the impact of chemical substitutions on the local electronic response at domain walls is largely unexplored. Here, the hexagonal manganite ErMnO3_3 is donor doped with Ti4+^{4+}. Density functional theory calculations show that Ti4+^{4+} goes to the B-site, replacing Mn3+^{3+}. Scanning probe microscopy measurements confirm the robustness of the ferroelectric domain template. The electronic transport at both macro- and nanoscopic length scales is characterized. The measurements demonstrate the intrinsic nature of emergent domain wall currents and point towards Poole-Frenkel conductance as the dominant transport mechanism. Aside from the new insight into the electronic properties of hexagonal manganites, B-site doping adds an additional degree of freedom for tuning the domain wall functionality

    X-ray emission from the old pulsar B0950+08

    Full text link
    We present the timing and spectral analyses of theXMM-newton data on the 17-Myr-old, nearby radio pulsar B0950+08. This observation revealed pulsations of the X-ray flux of the pulsar at its radio period. The pulse shape and pulsed fraction are apparently different at lower and higher energies of the observed 0.2-10 keV energy range, which suggests that the radiation cannot be explained by a single emission mechanism. The X-ray spectrum of the pulsar can be fitted with a power-law model with a photon index about 1.75 and an (isotropic) luminosity about 9.8e29 erg/s in the 0.2-10 keV. Better fits are obtained with two-component, power-law plus thermal, models with index of 1.30 and 9.7e29 erg/s for the power-law component that presumably originates from the pulsar's magnetosphere. The thermal component, dominating at E>0.7 keV, can be interpreted as radiation from heated polar caps on the neutron star surface covered with a hydrogen atmosphere. The inferred effective temperature, radius, and bolometric luminosity of the polar caps are about 1 MK, 250 m, and 3e29 erg/s. Optical through X-ray nonthermal spectrum of the pulsar can be described as a single power-law with index 1.3-1.4 for the two-component X-ray fit. The ratio of the nonthermal X-ray (1-10 keV) luminosity to the nonthermal optical (4000-9000 \AA) luminosity is within the range of 1e2-1e3 observed for younger pulsars, which suggests that the magnetospheric X-ray and optical emissions are powered by the same mechanism in all pulsars. An upper limit on the temperature of the bulk of the neutron star surface, inferred from the optical and X-ray data, is about 0.15 MK. We also analyze X-ray observations of several other old pulsars, B2224+65, J2043+2740, B0628-28, B1813-36, B1929+10, and B0823+26.Comment: To be published in ApJ. Nonthermal optical and X-ray luminosities of seven radio pulsars are updated and presented in a new Table. Figure 6 showing the ratios of the luminosities vs. spin-down energy is also update

    Diquark Condensates and Compact Star Cooling

    Full text link
    The effect of color superconductivity on the cooling of quark stars and neutron stars with large quark cores is investigated. Various known and new quark-neutrino processes are studied. As a result, stars being in the color flavor locked (CFL) color superconducting phase cool down extremely fast. Quark stars with no crust cool down too rapidly in disagreement with X-ray data. The cooling of stars being in the N_f =2 color superconducting (2SC) phase with a crust is compatible with existing X-ray data. Also the cooling history of stars with hypothetic pion condensate nuclei and a crust does not contradict the data.Comment: 10 pages, 5 figures, accepted for publication in Ap

    Thermal Evolution of Neutron Stars in 2 Dimensions

    Full text link
    There are many factors that contribute to the breaking of the spherical symmetry of a neutron star. Most notably is rotation, magnetic fields, and/or accretion of matter from companion stars. All these phenomena influence the macroscopic structures of neutron stars, but also impact their microscopic compositions. The purpose of this paper is to investigate the cooling of rotationally deformed, two-dimensional (2D) neutron stars in the framework of general relativity theory, with the ultimate goal of better understand the impact of 2D effects on the thermal evolution of such objects. The equations that govern the thermal evolution of rotating neutron stars are presented in this paper. The cooling of neutron stars with different frequencies is computed self-consistently by combining a fully general relativistic 2D rotation code with a general relativistic 2D cooling code. We show that rotation can significantly influence the thermal evolution of rotating neutron stars. Among the major new aspects are the appearances of hot spots on the poles, and an increase of the thermal coupling times between the core and the crust of rotating neutron stars. We show that this increase is independent of the microscopic properties of the stellar core, but depends only on the frequency of the star.Comment: 8 pages, 6 figures, revised versio
    corecore