4,060 research outputs found

    Optical Resonances in Reflectivity near Crystal Modes with Spatial Dispersion

    Full text link
    We study the effect of spatial dispersion of crystal modes on optical properties such as the reflectivity RR. As an example for isotropic media, we investigate the simplest model for phonons in ionic crystals and compare with previous results for highly anisotropic plasmons, which are now understood from a more general point of view. As a consequence of the wave vector dependence of the dielectric function small changes in the lineshape are predicted. Beyond that, if the frequency of minimal RR is near a pole of the dispersionless dielectric function, the relative amplitude of dips in RR with normal and anomalous dispersion differ significantly, if dissipation and disorder are low.Comment: 4 pages, 7 eps figures, minor change

    A Simple Grand Unified Relation between Neutrino Mixing and Quark Mixing

    Full text link
    It is proposed that all flavor mixing is caused by the mixing of the three quark and lepton families with vectorlike fermions in 5 + 5-bar multiplets of SU(5). This simple assumption implies that both V_{CKM} and U_{MNS} are generated by a single matrix. The entire 3-by-3 complex mass matrix of the neutrinos M_{nu} is then found to have a simple expression in terms of two complex parameters and an overall scale. Thus, all the presently unknown neutrino parameters are predicted. The best fits are for theta_{atm} less than or approximately 40 degrees. The leptonic Dirac CP phase is found to be somewhat greater than pi radians.Comment: 10 pages, 4 figures, one table. Typos correcte

    Strong Pinning in High Temperature Superconductors

    Full text link
    Detailed measurements of the critical current density jc of YBa2Cu3O7 films grown by pulsed laser deposition reveal the increase of jc as function of the filmthickness. Both this thickness dependence and the field dependence of the critical current are consistently described using a generalization of the theory of strong pinning of Ovchinnikov and Ivlev [Phys. Rev. B 43, 8024 (1991)]. From the model, we deduce values of the defect density (10^21 m^-3) and the elementary pinning force, which are in good agreement with the generally accepted values for Y2O3-inclusions. In the absence of clear evidence that the critical current is determined by linear defects or modulations of the film thickness, our model provides an alternative explanation for the rather universal field dependence of the critical current density found in YBa2Cu3O7 films deposited by different methods.Comment: 11 pages; 8 Figures; Published Phys. Rev. B 66, 024523 (2002

    f-Oscillators and Nonlinear Coherent States

    Get PDF
    The notion of f-oscillators generalizing q-oscillators is introduced. For classical and quantum cases, an interpretation of the f-oscillator is provided as corresponding to a special nonlinearity of vibration for which the frequency of oscillation depends on the energy. The f-coherent states (nonlinear coherent states) generalizing q-coherent states are constructed. Applied to quantum optics, photon distribution function, photon number means, and dispersions are calculated for the f-coherent states as well as the Wigner function and Q-function. As an example, it is shown how this nonlinearity may affect the Planck distribution formula.Comment: Latex, 32 pages, accepted by Physica Script

    Universality in the Screening Cloud of Dislocations Surrounding a Disclination

    Full text link
    A detailed analytical and numerical analysis for the dislocation cloud surrounding a disclination is presented. The analytical results show that the combined system behaves as a single disclination with an effective fractional charge which can be computed from the properties of the grain boundaries forming the dislocation cloud. Expressions are also given when the crystal is subjected to an external two-dimensional pressure. The analytical results are generalized to a scaling form for the energy which up to core energies is given by the Young modulus of the crystal times a universal function. The accuracy of the universality hypothesis is numerically checked to high accuracy. The numerical approach, based on a generalization from previous work by S. Seung and D.R. Nelson ({\em Phys. Rev A 38:1005 (1988)}), is interesting on its own and allows to compute the energy for an {\em arbitrary} distribution of defects, on an {\em arbitrary geometry} with an arbitrary elastic {\em energy} with very minor additional computational effort. Some implications for recent experimental, computational and theoretical work are also discussed.Comment: 35 pages, 21 eps file

    Observation of the Smectic C -- Smectic I Critical Point

    Full text link
    We report the first observation of the smectic C--smectic I (C--I) critical point by Xray diffraction studies on a binary system. This is in confirmity with the theoretical idea of Nelson and Halperin that coupling to the molecular tilt should induce hexatic order even in the C phase and as such both C and I (a tilted hexatic phase) should have the same symmetry. The results provide evidence in support of the recent theory of Defontaines and Prost proposing a new universality class for critical points in layered systems.Comment: 9 pages Latex and 5 postscript figures available from [email protected] on request, Phys.Rev.Lett. (in press

    Starcounts Redivivus. IV. Density Laws Through Photometric Parallaxes

    Full text link
    In an effort to more precisely define the spatial distribution of Galactic field stars, we present an analysis of the photometric parallaxes of 70,000 stars covering nearly 15 square degrees in seven Kapteyn Selected Areas. We address the affects of Malmquist Bias, subgiant/giant contamination, metallicity and binary stars upon the derived density laws. The affect of binary stars is the most significant. We find that while the disk-like populations of the Milky Way are easily constrained in a simultaneous analysis of all seven fields, no good simultaneous solution for the halo is found. We have applied halo density laws taken from other studies and find that the Besancon flattened power law halo model (c/a=0.6, r^-2.75) produces the best fit to our data. With this halo, the thick disk has a scale height of 750 pc with an 8.5% normalization to the old disk. The old disk scale height is 280-300 pc. Corrected for a binary fraction of 50%, these scale heights are 940 pc and 350-375 pc, respectively. Even with this model, there are systematic discrepancies between the observed and predicted density distributions. Our model produces density overpredictions in the inner Galaxy and density underpredictions in the outer Galaxy. A possible solution is modeling the stellar halo as a two-component system in which the halo has a flattened inner distribution and a roughly spherical, but substructured outer distribution. Further reconciliation could be provided by a flared thick disk, a structure consistent with a merger origin for that population. (Abridged)Comment: 66 pages, accepted to Astrophysical journal, some figures compresse

    Climate projections and their impact on policy and practice

    Full text link
    This article examines the relationship between projections of climate change and the responses to those projections. First, it discusses uncertainty and its role in shaping not only the production of climate projections but also the use of these projections by decision makers. We find that uncertainty critically affects the way climate projections move from useful to usable, where usefulness is defined by scientists' perception of users' needs, and usability is defined by users' perception of what knowledge can be readily applied to their decision. From the point of view of the natural scientist, we pose that there is an uncertainty fallacy, that is, a belief that the systematic reduction of uncertainty in climate projections is required in order for the projections to be used by decision makers. Second, we explore the implications of climate projections for policy and decision making, using examples from the seasonal climate forecast applications literature as an analog. We examine constraints and opportunities for their application in policy and practice and find that over-reliance on science and technical solutions might crowd out the moral imperative to do what is needed to improve livelihoods and to guarantee ecosystems' long-term sustainability. We conclude that, in the context of high uncertainty, decision makers should not look for ‘perfect’ forecasts, but seek to implement knowledge systems that integrate climate projections with other kinds of knowledge and that consider the multiple stressors that shape their decision environment. Copyright © 2010 John Wiley & Sons, Ltd. For further resources related to this article, please visit the WIREs websitePeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78059/1/71_ftp.pd

    Self generated randomness, defect wandering and viscous flow in stripe glasses

    Full text link
    We show that the competition between interactions on different length scales, as relevant for the formation of stripes in doped Mott insulators, can cause a glass transition in a system with no explicitly quenched disorder. We analytically determine a universal criterion for the emergence of an exponentially large number of metastable configurations that leads to a finite configurational entropy and a landscape dominated viscous flow. We demonstrate that glassines is unambiguously tied to a new length scale which characterizes the typical length over which defects and imperfections in the stripe pattern are allowed to wander over long times.Comment: 17 pages, 9 figure
    corecore