221 research outputs found
A renormalized Gross-Pitaevskii Theory and vortices in a strongly interacting Bose gas
We consider a strongly interacting Bose-Einstein condensate in a spherical
harmonic trap. The system is treated by applying a slave-boson representation
for hard-core bosons. A renormalized Gross-Pitaevskii theory is derived for the
condensate wave function that describes the dilute regime (like the
conventional Gross-Pitaevskii theory) as well as the dense regime. We calculate
the condensate density of a rotating condensate for both the vortex-free
condensate and the condensate with a single vortex and determine the critical
angular velocity for the formation of a stable vortex in a rotating trap.Comment: 13 pages, 5 figures; revision and extension, figure 2 adde
Interacting bosons in an optical lattice: Bose-Einstein condensates and Mott insulator
A dense Bose gas with hard-core interaction is considered in an optical
lattice. We study the phase diagram in terms of a special mean-field theory
that describes a Bose-Einstein condensate and a Mott insulator with a single
particle per lattice site for zero as well as for non-zero temperatures. We
calculate the densities, the excitation spectrum and the static structure
factor for each of these phases.Comment: 17 pages, 5 figures; 1 figure added, typos remove
The 1/N Expansion in Noncommutative Quantum Mechanics
We study the 1/N expansion in noncommutative quantum mechanics for the
anharmonic and Coulombian potentials. The expansion for the anharmonic
oscillator presented good convergence properties, but for the Coulombian
potential, we found a divergent large N expansion when using the usual
noncommutative generalization of the potential. We proposed a modified version
of the noncommutative Coulombian potential which provides a well-behaved 1/N
expansion.Comment: v2: resided version, to appear in PRD, 18 pages, 4 figure
Correlations in Systems of Complex Directed Macromolecules
An ensemble of directed macromolecules on a lattice is considered, where the
constituting molecules are chosen as a random sequence of N different types.
The same type of molecules experiences a hard-core (exclusion) interaction. We
study the robustness of the macromolecules with respect to breaking and
substituting individual molecules, using a 1/N expansion. The properties depend
strongly on the density of macromolecules. In particular, the macromolecules
are robust against breaking and substituting at high densities.Comment: 9 pages, 4 figure
Theory of a Slow-Light Catastrophe
In diffraction catastrophes such as the rainbow the wave nature of light
resolves ray singularities and draws delicate interference patterns. In quantum
catastrophes such as the black hole the quantum nature of light resolves wave
singularities and creates characteristic quantum effects related to Hawking
radiation. The paper describes the theory behind a recent proposal [U.
Leonhardt, arXiv:physics/0111058, Nature (in press)] to generate a quantum
catastrophe of slow light.Comment: Physical Review A (in press
Generation and characterisation of Friedreich ataxia YG8R mouse fibroblast and neural stem cell models
This article has been made available through the Brunel Open Access Publishing Fund.Background: Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disease caused by GAA repeat expansion in the first intron of the FXN gene, which encodes frataxin, an essential mitochondrial protein. To further characterise the molecular abnormalities associated with FRDA pathogenesis and to hasten drug screening, the development and use of animal and cellular models is considered essential. Studies of lower organisms have already contributed to understanding FRDA disease pathology, but mammalian cells are more related to FRDA patient cells in physiological terms. Methodology/Principal Findings: We have generated fibroblast cells and neural stem cells (NSCs) from control Y47R mice (9 GAA repeats) and GAA repeat expansion YG8R mice (190+120 GAA repeats). We then differentiated the NSCs in to neurons, oligodendrocytes and astrocytes as confirmed by immunocytochemical analysis of cell specific markers. The three YG8R mouse cell types (fibroblasts, NSCs and differentiated NSCs) exhibit GAA repeat stability, together with reduced expression of frataxin and reduced aconitase activity compared to control Y47R cells. Furthermore, YG8R cells also show increased sensitivity to oxidative stress and downregulation of Pgc-1α and antioxidant gene expression levels, especially Sod2. We also analysed various DNA mismatch repair (MMR) gene expression levels and found that YG8R cells displayed significant reduction in expression of several MMR genes, which may contribute to the GAA repeat stability. Conclusions/Significance: We describe the first fibroblast and NSC models from YG8R FRDA mice and we confirm that the NSCs can be differentiated into neurons and glia. These novel FRDA mouse cell models, which exhibit a FRDA-like cellular and molecular phenotype, will be valuable resources to further study FRDA molecular pathogenesis. They will also provide very useful tools for preclinical testing of frataxin-increasing compounds for FRDA drug therapy, for gene therapy, and as a source of cells for cell therapy testing in FRDA mice. © 2014 Sandi et al
Sustainable drainage system site assessment method using urban ecosystem services
The United Kingdom's recently updated approach to sustainable drainage enhanced biodiversity and amenity objectives by incorporating the ecosystem approach and the
ecosystem services concept. However, cost-effective and reliable methods to appraise the biodiversity and amenity values of potential sustainable drainage system (SuDS)sites and their surrounding areas are still lacking, as is a method to enable designers to distinguish and link the amenity and biodiversity benefits that SuDS schemes can offer. In this paper, therefore, the authors propose two ecosystem services- and disservices-based methods (i.e. vegetation structure cover-abundance examination and cultural ecosystem services and disservices variables appraisal) to aid SuDS designers to distinguish and link amenity and biodiversity benefits, and allow initial site
assessments to be performed in a cost-effective and reliable fashion. Forty-nine representative sites within Greater Manchester were selected to test the two methods.
Amenity and biodiversity were successfully assessed and habitat for species, carbon sequestration, recreation and education ecosystem services scores were produced,which will support SuDS retrofit design decision-making. Large vegetated SuDS sites with permanent aquatic features were found to be most capable of enhancing biodiversity- and amenity-related ecosystem services. Habitat for species and
recreation ecosystem services were also found to be positively linked to each other. Finally, waste bins on site were found to help reduce dog faeces and litter coverage. Overall, the findings presented here enable future SuDS retrofit designs to be more wildlife friendly and socially inclusive
The use of mesenchymal stem cells for cartilage repair and regeneration: a systematic review.
BACKGROUND: The management of articular cartilage defects presents many clinical challenges due to its avascular, aneural and alymphatic nature. Bone marrow stimulation techniques, such as microfracture, are the most frequently used method in clinical practice however the resulting mixed fibrocartilage tissue which is inferior to native hyaline cartilage. Other methods have shown promise but are far from perfect. There is an unmet need and growing interest in regenerative medicine and tissue engineering to improve the outcome for patients requiring cartilage repair. Many published reviews on cartilage repair only list human clinical trials, underestimating the wealth of basic sciences and animal studies that are precursors to future research. We therefore set out to perform a systematic review of the literature to assess the translation of stem cell therapy to explore what research had been carried out at each of the stages of translation from bench-top (in vitro), animal (pre-clinical) and human studies (clinical) and assemble an evidence-based cascade for the responsible introduction of stem cell therapy for cartilage defects. This review was conducted in accordance to PRISMA guidelines using CINHAL, MEDLINE, EMBASE, Scopus and Web of Knowledge databases from 1st January 1900 to 30th June 2015. In total, there were 2880 studies identified of which 252 studies were included for analysis (100 articles for in vitro studies, 111 studies for animal studies; and 31 studies for human studies). There was a huge variance in cell source in pre-clinical studies both of terms of animal used, location of harvest (fat, marrow, blood or synovium) and allogeneicity. The use of scaffolds, growth factors, number of cell passages and number of cells used was hugely heterogeneous. SHORT CONCLUSIONS: This review offers a comprehensive assessment of the evidence behind the translation of basic science to the clinical practice of cartilage repair. It has revealed a lack of connectivity between the in vitro, pre-clinical and human data and a patchwork quilt of synergistic evidence. Drivers for progress in this space are largely driven by patient demand, surgeon inquisition and a regulatory framework that is learning at the same pace as new developments take place
Violent Deaths of Iraqi Civilians, 2003–2008: Analysis by Perpetrator, Weapon, Time, and Location
Madelyn Hsiao-Rei Hicks and colleagues provide a detailed analysis of Iraqi civilian violent deaths during 2003-2008 of the Iraq war and show that of 92,614 deaths, unknown perpetrators caused 74% of deaths, Coalition forces 12%, and Anti-Coalition forces 11%
Chronic pain self-management support with pain science education and exercise (COMMENCE): study protocol for a randomized controlled trial
- …
