1,280 research outputs found

    Green Synthesis of Magnetite Nanoparticles (via Thermal Decomposition Method) with Controllable Size and Shape

    Get PDF
    Magnetite (Fe3O4) nanoparticles with controllable size and shape were synthesized by the thermal decomposition method. In contrast to previously reported thermal decomposition methods, our synthesis method had utilized a much cheaper and less toxic iron precursor, iron acetylacetonate (Fe(acac)3), and environmentally benign and non-toxic polyethylene oxide (PEO) was being used as the solvent and surfactant simultaneously. Fe3O4 nanoparticles of controllable size and shape were prepared by manipulating the synthesis parameters such as precursor concentrations, reaction durations and surfactants

    For the Desert Island

    Full text link

    A novel approach to sonographic examination in a patient with a calf muscle tear: a case report

    Get PDF
    © 2009 Chen et al; licensee Cases Network Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens

    Determination of the Fermion Pair Size in a Resonantly Interacting Superfluid

    Full text link
    Fermionic superfluidity requires the formation of pairs. The actual size of these fermion pairs varies by orders of magnitude from the femtometer scale in neutron stars and nuclei to the micrometer range in conventional superconductors. Many properties of the superfluid depend on the pair size relative to the interparticle spacing. This is expressed in BCS-BEC crossover theories, describing the crossover from a Bardeen-Cooper-Schrieffer (BCS) type superfluid of loosely bound and large Cooper pairs to Bose-Einstein condensation (BEC) of tightly bound molecules. Such a crossover superfluid has been realized in ultracold atomic gases where high temperature superfluidity has been observed. The microscopic properties of the fermion pairs can be probed with radio-frequency (rf) spectroscopy. Previous work was difficult to interpret due to strong and not well understood final state interactions. Here we realize a new superfluid spin mixture where such interactions have negligible influence and present fermion-pair dissociation spectra that reveal the underlying pairing correlations. This allows us to determine the spectroscopic pair size in the resonantly interacting gas to be 2.6(2)/kF (kF is the Fermi wave number). The pairs are therefore smaller than the interparticle spacing and the smallest pairs observed in fermionic superfluids. This finding highlights the importance of small fermion pairs for superfluidity at high critical temperatures. We have also identified transitions from fermion pairs into bound molecular states and into many-body bound states in the case of strong final state interactions.Comment: 8 pages, 7 figures; Figures updated; New Figures added; Updated discussion of fit function

    Most vital segment barriers

    Get PDF
    We study continuous analogues of "vitality" for discrete network flows/paths, and consider problems related to placing segment barriers that have highest impact on a flow/path in a polygonal domain. This extends the graph-theoretic notion of "most vital arcs" for flows/paths to geometric environments. We give hardness results and efficient algorithms for various versions of the problem, (almost) completely separating hard and polynomially-solvable cases

    Case Report A Case of Acute Hepatitis E Infection in a Patient with Non-Hodgkin Lymphoma Treated Successfully with Ribavirin

    Get PDF
    We present the case of a man who, following immunosuppressive treatment for non-Hodgkin lymphoma, became infected with viral hepatitis E. Acute hepatitis E virus infection should be considered in patients with deranged liver function on a background of haematological malignancies or immunosuppression, even without travel to endemic regions. Whilst clearance is usually spontaneous in immune-competent individuals, these at-risk groups may develop a more complicated and protracted disease course. Thus awareness is important as additional treatment with ribavirin or pegylated interferon may be required, as in this case, in order to help achieve eradication

    The Role of Final State Interactions in Quasielastic 56^{56}Fe(e,e)(e,e') Reactions at large q|\vec q|

    Full text link
    A relativistic finite nucleus calculation using a Dirac optical potential is used to investigate the importance of final state interactions [FSI] at large momentum transfers in inclusive quasielastic electronuclear reactions. The optical potential is derived from first-order multiple scattering theory and then is used to calculate the FSI in a nonspectral Green's function doorway approach. At intermediate momentum transfers excellent predictions of the quasielastic 56^{56}Fe(e,e)(e,e') experimental data for the longitudinal response function are obtained. In comparisons with recent measurements at q=1.14|{\vec q|}=1.14~GeV/c the theoretical calculations of RLR_L give good agreement for the quasielastic peak shape and amplitude, but place the position of the peak at an energy transfer of about 4040~MeV higher than the data.Comment: 13 pages typeset using revtex 3.0 with 6 postscript figures in accompanying uuencoded file; submitted to Phys. Rev.

    Betel nut chewing and incidence of newly diagnosed type 2 diabetes mellitus in Taiwan.

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Betel nut chewing is associated with type 2 diabetes mellitus (T2DM) in a recent prevalence study in Taiwan. The present study further investigated its link with the incidence of newly diagnosed T2DM during the years 1992-1996.</p> <p>Methods</p> <p>Population-based datasets of a sample of 93,484 out of 256,036 diabetic patients from 66 medical settings using the National Health Insurance scheme covering > 96% of the population, published population prevalence of betel nut chewing and the governmental census of national population were used for calculation of odds ratios, incidence rates and incidence rate ratios between chewers and never-chewers in the male population for the year 1992 to 1996.</p> <p>Results</p> <p>Ever chewers among the diabetic patients were younger, more obese and had higher prevalence of parental diabetes than never-chewers (all <it>p </it>values < 0.001). Odds ratios for T2DM for ever chewers vs. never-chewers in the age of < 40, 40-49, 50-59, 60-69 and ≥70 years were 1.06 (0.92-1.23), 1.60 (1.45-1.76), 2.12 (1.88-2.39), 3.58 (3.10-4.13) and 7.14 (5.47-9.31), respectively. In 1996, incidence rates (per 100,000 population) in the respective age groups were 19.1, 251.5, 567.3, 721.7 and 971.4 for never-chewers; and were 30.2, 520.9, 2566.9, 11672.8 and 630.3 for ever chewers. The respective incidence rate ratios were 1.58, 2.07, 4.52, 16.17 and 0.65. The age-specific incidence rates and rate ratios were relatively consistent from 1992 to 1996. The differences in obesity and parental diabetes between ever chewers and never-chewers were mostly not statistically significant after age stratification, suggesting the link could not be attributed to these two factors.</p> <p>Conclusions</p> <p>Chewing betel nut is associated with newly diagnosed T2DM, supporting the suggestion that the habit is diabetogenic.</p

    Multifractal characterization of stochastic resonance

    Full text link
    We use a multifractal formalism to study the effect of stochastic resonance in a noisy bistable system driven by various input signals. To characterize the response of a stochastic bistable system we introduce a new measure based on the calculation of a singularity spectrum for a return time sequence. We use wavelet transform modulus maxima method for the singularity spectrum computations. It is shown that the degree of multifractality defined as a width of singularity spectrum can be successfully used as a measure of complexity both in the case of periodic and aperiodic (stochastic or chaotic) input signals. We show that in the case of periodic driving force singularity spectrum can change its structure qualitatively becoming monofractal in the regime of stochastic synchronization. This fact allows us to consider the degree of multifractality as a new measure of stochastic synchronization also. Moreover, our calculations have shown that the effect of stochastic resonance can be catched by this measure even from a very short return time sequence. We use also the proposed approach to characterize the noise-enhanced dynamics of a coupled stochastic neurons model.Comment: 10 pages, 21 EPS-figures, RevTe
    corecore