39 research outputs found

    Identification of chromosomal alpha-proteobacterial small RNAs by comparative genome analysis and detection in Sinorhizobium meliloti strain 1021

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Small untranslated RNAs (sRNAs) seem to be far more abundant than previously believed. The number of sRNAs confirmed in <it>E. coli </it>through various approaches is above 70, with several hundred more sRNA candidate genes under biological validation. Although the total number of sRNAs in any one species is still unclear, their importance in cellular processes has been established. However, unlike protein genes, no simple feature enables the prediction of the location of the corresponding sequences in genomes. Several approaches, of variable usefulness, to identify genomic sequences encoding sRNA have been described in recent years.</p> <p>Results</p> <p>We used a combination of <it>in silico </it>comparative genomics and microarray-based transcriptional profiling. This approach to screening identified ~60 intergenic regions conserved between <it>Sinorhizobium meliloti </it>and related members of the alpha-proteobacteria sub-group 2. Of these, 14 appear to correspond to novel non-coding sRNAs and three are putative peptide-coding or 5' UTR RNAs (ORF smaller than 100 aa). The expression of each of these new small RNA genes was confirmed by Northern blot hybridization.</p> <p>Conclusion</p> <p>Small non coding RNA (<it>sra</it>) genes can be found in the intergenic regions of alpha-proteobacteria genomes. Some of these <it>sra </it>genes are only present in <it>S. meliloti</it>, sometimes in genomic islands; homologues of others are present in related genomes including those of the pathogens <it>Brucella </it>and <it>Agrobacterium</it>.</p

    Analyzing stochastic transcription to elucidate the nucleoid's organization.

    Get PDF
    International audienceABSTRACT: BACKGROUND: The processes of gene transcription, translation, as well as the reactions taking place between gene products, are subject to stochastic fluctuations. These stochastic events are being increasingly examined as it emerges that they can be crucial in the cell's survival. In a previous study we had examined the transcription patterns of two bacterial species (Escherichia coli and Bacillus subtilis) to elucidate the nucleoid's organization. The basic idea is that genes that share transcription patterns, must share some sort of spatial relationship, even if they are not close to each other on the chromosome. We had found that picking any gene at random, its transcription will be correlated with genes at well-defined short- as well as long-range distances, leaving the explanation of the latter an open question. In this paper we study the transcription correlations when the only transcription taking place is stochastic, in other words, no active or "deterministic" transcription takes place. To this purpose we use transcription data of Sinorhizobium meliloti. RESULTS: Even when only stochastic transcription takes place, the co-expression of genes varies as a function of the distance between genes: we observe again the short-range as well as the regular, long-range correlation patterns. CONCLUSION: We explain these latter with a model based on the physical constraints acting on the DNA, forcing it into a conformation of groups of a few successive large and transcribed loops, which are evenly spaced along the chromosome and separated by small, non-transcribed loops. We discuss the question about the link between shared transcription patterns and physiological relationship and come to the conclusion that when genes are distantly placed along the chromosome, the transcription correlation does not imply a physiological relationship

    OxyGene: an innovative platform for investigating oxidative-response genes in whole prokaryotic genomes

    Get PDF
    International audienceBACKGROUND: Oxidative stress is a common stress encountered by living organisms and is due to an imbalance between intracellular reactive oxygen and nitrogen species (ROS, RNS) and cellular antioxidant defence. To defend themselves against ROS/RNS, bacteria possess a subsystem of detoxification enzymes, which are classified with regard to their substrates. To identify such enzymes in prokaryotic genomes, different approaches based on similarity, enzyme profiles or patterns exist. Unfortunately, several problems persist in the annotation, classification and naming of these enzymes due mainly to some erroneous entries in databases, mistake propagation, absence of updating and disparity in function description. DESCRIPTION: In order to improve the current annotation of oxidative stress subsystems, an innovative platform named OxyGene has been developed. It integrates an original database called OxyDB, holding thoroughly tested anchor-based signatures associated to subfamilies of oxidative stress enzymes, and a new anchor-driven annotator, for ab initio detection of ROS/RNS response genes. All complete Bacterial and Archaeal genomes have been re-annotated, and the results stored in the OxyGene repository can be interrogated via a Graphical User Interface. CONCLUSION: OxyGene enables the exploration and comparative analysis of enzymes belonging to 37 detoxification subclasses in 664 microbial genomes. It proposes a new classification that improves both the ontology and the annotation of the detoxification subsystems in prokaryotic whole genomes, while discovering new ORFs and attributing precise function to hypothetical annotated proteins. OxyGene is freely available at: http://www.umr6026.univ-rennes1.fr/english/home/research/basic/software

    Transcarboxylase mRNA: A marker which evidences P. freudenreichii survival and metabolic activity during its transit in the human gut

    No full text
    Dairy propionibacteria have recently been considered as probiotics which may beneficially modulate the intestinal ecosystem. However, appropriate vectors (food matrices containing the probiotic) which preserve their viability and offer good tolerance towards digestive stresses need to be developed. In addition, the development of efficient non-invasive methods which specifically monitor Propionibacterium freudenreichii concentration and activity within the human gut is required. To address this latter need, an enzyme involved in propionic fermentation, transcarboxylase, was evaluated in this study as molecular marker in P. freudenreichii. In vitro, the three transcarboxylase subunits were shown to be encoded by an operon and their expression regulated. It occurred during propionic fermentation, ceased in starved cells and was not affected by digestive stresses. The 5S subunit gene of transcarboxylase allowed specific detection of P. freudenreichii by real time PCR in the complex human faecal microbiota. A dairy vector harbouring P. freudenreichii was developed and afforded elevated probiotic faecal concentrations in humans. In vivo, this PCR method allowed rapid quantification of faecal P. freudenreichii in agreement with the cultural method (cfu counting). Moreover, real time Reverse Transcription (RT) -PCR evidenced transcription of the 5S subunit gene during transit through the human digestive tract. This work constitutes a methodological advance for survival and activity evaluation in human trials of the probiotics belonging to the P. freudenreichii species. It strongly suggests that this bacterium not only survives but remains metabolically active in the human gut

    Characterization and expression patterns of Sinorhizobium meliloti tmRNA (ssrA).

    No full text
    International audiencetmRNA (ssrA) in Sinorhizobium meliloti is a small RNA annotated by homology with the Bradyrhizobium japonicum sra molecule. Here, this molecule is described in Sinorhizobium meliloti as a model for such molecules in Alphaproteobacteria subgroup-2. Northern blot analysis and mapping of both 5' and 3' ends of this tmRNA allow the identification of two pieces: a 214 nt mRNA-like domain and an 82 nt tRNA-like domain, both highly stable, whereas the premature form is unstable. Transcriptional studies reveal that Sinorhizobium meliloti tmRNA is mainly expressed during growth resumption, replication initiation and various stress responses

    OxyGene: an innovative platform for investigating oxidative-response genes in whole prokaryotic genomes

    No full text
    Abstract Background Oxidative stress is a common stress encountered by living organisms and is due to an imbalance between intracellular reactive oxygen and nitrogen species (ROS, RNS) and cellular antioxidant defence. To defend themselves against ROS/RNS, bacteria possess a subsystem of detoxification enzymes, which are classified with regard to their substrates. To identify such enzymes in prokaryotic genomes, different approaches based on similarity, enzyme profiles or patterns exist. Unfortunately, several problems persist in the annotation, classification and naming of these enzymes due mainly to some erroneous entries in databases, mistake propagation, absence of updating and disparity in function description. Description In order to improve the current annotation of oxidative stress subsystems, an innovative platform named OxyGene has been developed. It integrates an original database called OxyDB, holding thoroughly tested anchor-based signatures associated to subfamilies of oxidative stress enzymes, and a new anchor-driven annotator, for ab initio detection of ROS/RNS response genes. All complete Bacterial and Archaeal genomes have been re-annotated, and the results stored in the OxyGene repository can be interrogated via a Graphical User Interface. Conclusion OxyGene enables the exploration and comparative analysis of enzymes belonging to 37 detoxification subclasses in 664 microbial genomes. It proposes a new classification that improves both the ontology and the annotation of the detoxification subsystems in prokaryotic whole genomes, while discovering new ORFs and attributing precise function to hypothetical annotated proteins. OxyGene is freely available at: http://www.umr6026.univ-rennes1.fr/english/home/research/basic/software</p

    Fine mapping of hydrophobic contacts reassesses the organisation of the first three dystrophin coiled-coil repeats

    No full text
    International audienceCoiled-coil domain is a structural motif found in proteins crucial for achievement of central biological processes, such as cellular cohesion or neuro-transmission. The coiled-coil fold consists of alpha-helices bundle that can be repeated to form larger filament. Hydrophobic residues, distributed following a regular seven-residues pattern, named heptad pattern, are commonly admitted to be essential for the formation and the stability of canonical coiled-coil repeats. Here we investigated the first three coiled-coil repeats (R1-3) of the central domain of dystrophin, a scaffolding protein in muscle cells whose deficiency leads to Duchenne and Becker Muscular Dystrophies. By an atomic description of the hydrophobic interactions, we highlighted (i) that coiled-coil filament conformational changes are associated to specific patterns of inter-helices hydrophobic contacts, (ii) that inter-repeat hydrophobic interactions determine the behaviour of linker regions including filament kinks, and (iii) that a non-strict conservation of the heptad patterns is leading to a relative plasticity of the dystrophin coiled-coil repeats. These structural features and modulations of the coiled-coil fold could better explain the mechanical properties of the central domain of dystrophin. This contribution to the understanding of the structure-function relationship of dystrophin, and especially of the R1-3 fragment frequently used in the design of protein for gene therapies, should help in the improvement of the strategies for the cure of muscular dystrophies. This article is protected by copyright. All rights reserved
    corecore