77,056 research outputs found

    How does the Smaller Alignment Index (SALI) distinguish order from chaos?

    Full text link
    The ability of the Smaller Alignment Index (SALI) to distinguish chaotic from ordered motion, has been demonstrated recently in several publications.\cite{Sk01,GRACM} Basically it is observed that in chaotic regions the SALI goes to zero very rapidly, while it fluctuates around a nonzero value in ordered regions. In this paper, we make a first step forward explaining these results by studying in detail the evolution of small deviations from regular orbits lying on the invariant tori of an {\bf integrable} 2D Hamiltonian system. We show that, in general, any two initial deviation vectors will eventually fall on the ``tangent space'' of the torus, pointing in different directions due to the different dynamics of the 2 integrals of motion, which means that the SALI (or the smaller angle between these vectors) will oscillate away from zero for all time.Comment: To appear in Progress of Theoretical Physics Supplemen

    Probing the local dynamics of periodic orbits by the generalized alignment index (GALI) method

    Full text link
    As originally formulated, the Generalized Alignment Index (GALI) method of chaos detection has so far been applied to distinguish quasiperiodic from chaotic motion in conservative nonlinear dynamical systems. In this paper we extend its realm of applicability by using it to investigate the local dynamics of periodic orbits. We show theoretically and verify numerically that for stable periodic orbits the GALIs tend to zero following particular power laws for Hamiltonian flows, while they fluctuate around non-zero values for symplectic maps. By comparison, the GALIs of unstable periodic orbits tend exponentially to zero, both for flows and maps. We also apply the GALIs for investigating the dynamics in the neighborhood of periodic orbits, and show that for chaotic solutions influenced by the homoclinic tangle of unstable periodic orbits, the GALIs can exhibit a remarkable oscillatory behavior during which their amplitudes change by many orders of magnitude. Finally, we use the GALI method to elucidate further the connection between the dynamics of Hamiltonian flows and symplectic maps. In particular, we show that, using for the computation of GALIs the components of deviation vectors orthogonal to the direction of motion, the indices of stable periodic orbits behave for flows as they do for maps.Comment: 17 pages, 9 figures (accepted for publication in Int. J. of Bifurcation and Chaos
    • …
    corecore