123 research outputs found

    Safety and preliminary efficacy of vorinostat with R-EPOCH in high-risk HIV-associated non-Hodgkin\u27s lymphoma (AMC-075)

    Get PDF
    We performed a phase I trial of vorinostat (VOR) given on days 1 to 5 with R-EPOCH (rituximab plus etoposide, prednisone, vincristine, cyclophosphamide, and doxorubicin hydrochloride) in patients with aggressive HIV-associated non-Hodgkin lymphoma. VOR was tolerable at 300 mg and seemingly efficacious with chemotherapy with complete response rate of 83% and 1-year event-free survival of 83%. VOR did not significantly alter chemotherapy steady-state concentrations, CD4+ cell counts, or HIV viral loads. Vorinostat (VOR), a histone deacetylase inhibitor, enhances the anti-tumor effects of rituximab (R) and cytotoxic chemotherapy, induces viral lytic expression and cell killing in Epstein-Barr virus-positive (EBV+) or human herpesvirus-8-positive (HHV-8+) tumors, and reactivates latent human immunodeficiency virus (HIV) for possible eradication by combination antiretroviral therapy (cART). We performed a phase I trial of VOR given with R-based infusional EPOCH (etoposide, prednisone, vincristine, cyclophosphamide, and doxorubicin hydrochloride) (n = 12) and cART in aggressive HIV-associated B-cell non-Hodgkin lymphoma (NHL) in order to identify safe dosing and schedule. VOR (300 or 400 mg) was given orally on days 1 to 5 with each cycle of R-EPOCH for 10 high-risk patients with diffuse large B-cell lymphoma (1 EBV+), 1 EBV+/HHV-8+ primary effusion lymphoma, and 1 unclassifiable NHL. VOR was escalated from 300 to 400 mg using a standard 3 + 3 design based on dose-limiting toxicity observed in cycle 1 of R-EPOCH. The recommended phase II dose of VOR was 300 mg, with dose-limiting toxicity in 2 of 6 patients at 400 mg (grade 4 thrombocytopenia, grade 4 neutropenia), and 1 of 6 treated at 300 mg (grade 4 sepsis from tooth abscess). Neither VOR, nor cART regimen, significantly altered chemotherapy steady-state concentrations. VOR chemotherapy did not negatively impact CD4+ cell counts or HIV viral loads, which decreased or remained undetectable in most patients during treatment. The response rate in high-risk patients with NHL treated with VOR(R)-EPOCH was 100% (complete 83% and partial 17%) with a 1-year event-free survival of 83% (95% confidence interval, 51.6%-97.9%). VOR combined with R-EPOCH was tolerable and seemingly efficacious in patients with aggressive HIV-NHL

    Kaposi's sarcoma herpesvirus activates the hypoxia response to usurp HIF2α-dependent translation initiation for replication and oncogenesis

    Get PDF
    Kaposi's sarcoma herpesvirus (KSHV) is an angiogenesis-inducing oncovirus whose ability to usurp the oxygen-sensing machinery is central to its oncogenicity. By upregulating the hypoxia-inducible factors (HIFs), KSHV reprograms infected cells to a hypoxia-like state, triggering angiogenesis. Here we identify a link between KSHV replicative biology and oncogenicity by showing that KSHV's ability to regulate HIF2α levels and localization to the endoplasmic reticulum (ER) in normoxia enables translation of viral lytic mRNAs through the HIF2α-regulated eIF4E2 translation-initiation complex. This mechanism of translation in infected cells is critical for lytic protein synthesis and contributes to KSHV-induced PDGFRA activation and VEGF secretion. Thus, KSHV regulation of the oxygen-sensing machinery allows virally infected cells to initiate translation via the mTOR-dependent eIF4E1 or the HIF2α-dependent, mTOR-independent, eIF4E2. This “translation initiation plasticity” (TRIP) is an oncoviral strategy used to optimize viral protein expression that links molecular strategies of viral replication to angiogenicity and oncogenesis.Fil: Méndez Solís, Omayra. University of Miami; Estados UnidosFil: Bendjennat, Mourad. University of Miami; Estados UnidosFil: Naipauer, Julian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. University of Miami; Estados UnidosFil: Theodoridis, Phaedra R.. University of Miami; Estados UnidosFil: Ho, J.J. David. University of Miami; Estados UnidosFil: Verdun, Ramiro E.. University of Miami; Estados UnidosFil: Hare, Joshua M.. University of Miami; Estados UnidosFil: Cesarman, Ethel. Weill Cornell Medicine; Estados UnidosFil: Lee, Stephen. University of Miami; Estados UnidosFil: Mesri, Enrique Alfredo. University of Miami; Estados Unido

    Rapamycin With Antiretroviral Therapy in AIDS-Associated Kaposi Sarcoma: An AIDS Malignancy Consortium Study

    Get PDF
    The mammalian target of rapamycin (mTOR) is activated in Kaposi sarcoma (KS) and its inhibitor, rapamycin, has induced KS regression in transplant-associated KS. This study aimed to evaluate rapamycin's safety and toxicity in HIV-infected individuals with KS receiving antiretroviral therapy (ART), investigate rapamycin interactions with both protease inhibitor (PI)-containing and non-nucleoside reverse transcriptase inhibitor (NNRTI)-containing ART regimens, and assess clinical and biological endpoints including KS response and mTOR-dependent signaling

    Identification of a nucleoside analog active against adenosine kinase-expressing plasma cell malignancies

    Get PDF
    Primary effusion lymphoma (PEL) is a largely incurable malignancy of B cell origin with plasmacytic differentiation. Here, we report the identification of a highly effective inhibitor of PEL. This compound, 6-ethylthioinosine (6-ETI), is a nucleoside analog with toxicity to PEL in vitro and in vivo, but not to other lymphoma cell lines tested. We developed and performed resistome analysis, an unbiased approach based on RNA sequencing of resistant subclones, to discover the molecular mechanisms of sensitivity. We found different adenosine kinase–inactivating (ADK-inactivating) alterations in all resistant clones and determined that ADK is required to phosphorylate and activate 6-ETI. Further, we observed that 6-ETI induces ATP depletion and cell death accompanied by S phase arrest and DNA damage only in ADK-expressing cells. Immunohistochemistry for ADK served as a biomarker approach to identify 6-ETI–sensitive tumors, which we documented for other lymphoid malignancies with plasmacytic features. Notably, multiple myeloma (MM) expresses high levels of ADK, and 6-ETI was toxic to MM cell lines and primary specimens and had a robust antitumor effect in a disseminated MM mouse model. Several nucleoside analogs are effective in treating leukemias and T cell lymphomas, and 6-ETI may fill this niche for the treatment of PEL, plasmablastic lymphoma, MM, and other ADK-expressing cancers
    • …
    corecore