1,769 research outputs found

    From single point of measurement to distributed sensing in long-term glacier monitoring

    Get PDF
    Glacial environment monitoring is a key task in understanding natural phenomena related to global warming. For the last 30 years, Automatic Weather Stations (AWSs) have been spreading among the meteorological and geophysical community, and are on the way to become a de facto standard to perform long-lasting unattended data acquisitions in single localized points of interest. Sensor Networks (SNs), on the other hand, promise the possibility to perform measurements with a higher spatial density and lower cost. Designing and developing a SN for glacial environment face particular challenges for embedded electronics and sensor systems, which is why SNs are still under research and development in this eld. This paper surveys the AWSs and SNs for glacial monitoring applications and compares their characteristics

    Fgf9 inhibition of meiotic differentiation in spermatogonia is mediated by Erk-dependent activation of Nodal-Smad2/3 signaling and is antagonized by Kit Ligand

    Get PDF
    Both fibroblast growth factor 9 (Fgf9) and Kit Ligand (Kl) signal through tyrosine kinase receptors, yet they exert opposite effects on meiotic differentiation in postnatal spermatogonia, Fgf9 acting as a meiosis-inhibiting substance and Kl acting as a promoter of the differentiation process. To understand the molecular mechanisms that might underlie this difference, we tried to dissect the intracellular signaling elicited by these two growth factors. We found that both Fgf9 and Kl stimulate Erk1/2 activation in Kit+ (differentiating) spermatogonia, even though with different time courses, whereas Kl, but not Fgf9, elicits activation of the Pi3k-Akt pathway. Sustained Erk1/2 activity promoted by Fgf9 is required for induction of the autocrine Cripto-Nodal-Smad2/3 signaling loop in these cells. Nodal signaling, in turn, is essential to mediate Fgf9 suppression of the meiotic program, including inhibition of Stra8 and Scp3 expression and induction of the meiotic gatekeeper Nanos2. On the contrary, sustained activation of the Pi3k-Akt pathway is required for the induction of Stra8 expression elicited by Kl and retinoic acid. Moreover, we found that Kl treatment impairs Nodal mRNA expression and Fgf9-mediated Nanos2 induction, reinforcing the antagonistic effect of these two growth factors on the meiotic fate of male germ cells

    Beam-based characterization of plasma density in a capillary-discharge waveguide

    Get PDF
    Next-generation plasma-based accelerators can push electron bunches to gigaelectronvolt energies within centimeter distances. In these devices, the accelerating force is provided by a driver pulse, either a laser pulse or a particle bunch, that loses its energy into the plasma generating huge electric fields up to tens of GV/m. The stability of such fields strongly depends on plasma density, whose exact value should be precisely known and controlled. However, currently available methods based on spectroscopic or interferometric techniques find it very difficult to measure plasma density lower than 1015–16 cm−3 in capillary-discharge waveguides. Here, we present a novel diagnostic tool that allows us to estimate the average density of a plasma capillary by probing it with an ultra-relativistic electron beam. The plasma density and the generated accelerating field are inferred by analyzing the beam longitudinal phase space after its interaction with the plasma. The results are validated by simulations showing excellent agreement

    Longitudinal phase-space manipulation with beam-driven plasma wakefields

    Full text link
    The development of compact accelerator facilities providing high-brightness beams is one of the most challenging tasks in field of next-generation compact and cost affordable particle accelerators, to be used in many fields for industrial, medical and research applications. The ability to shape the beam longitudinal phase-space, in particular, plays a key role to achieve high-peak brightness. Here we present a new approach that allows to tune the longitudinal phase-space of a high-brightness beam by means of a plasma wakefields. The electron beam passing through the plasma drives large wakefields that are used to manipulate the time-energy correlation of particles along the beam itself. We experimentally demonstrate that such solution is highly tunable by simply adjusting the density of the plasma and can be used to imprint or remove any correlation onto the beam. This is a fundamental requirement when dealing with largely time-energy correlated beams coming from future plasma accelerators

    Evidence for long-term Gamma-ray and X-ray variability from the unidentified TeV source HESS J0632+057

    Full text link
    HESS J0632+057 is one of only two unidentified very-high-energy gamma-ray sources which appear to be point-like within experimental resolution. It is possibly associated with the massive Be star MWC 148 and has been suggested to resemble known TeV binary systems like LS I +61 303 or LS 5039. HESS J0632+057 was observed by VERITAS for 31 hours in 2006, 2008 and 2009. During these observations, no significant signal in gamma rays with energies above 1 TeV was detected from the direction of HESS J0632+057. A flux upper limit corresponding to 1.1% of the flux of the Crab Nebula has been derived from the VERITAS data. The non-detection by VERITAS excludes with a probability of 99.993% that HESS J0632+057 is a steady gamma-ray emitter. Contemporaneous X-ray observations with Swift XRT reveal a factor of 1.8+-0.4 higher flux in the 1-10 keV range than earlier X-ray observations of HESS J0632+057. The variability in the gamma-ray and X-ray fluxes supports interpretation of the ob ject as a gamma-ray emitting binary.Comment: 8 pages, 3 figures, Accepted for publication in The Astrophysical Journa

    Neutralino Annihilation at the Galactic Center Revisited

    Full text link
    The annihilation of neutralino dark matter in the Galactic Center (GC) may result in radio signals that can be used to detect or constrain the dark matter halo density profile or dark matter particle properties. At the Galactic Center, the accretion flow onto the central Black Hole (BH) sustains strong magnetic fields that can induce synchrotron emission by electrons and positrons generated in neutralino annihilations during advection onto the BH. Here we reanalyze the radiative processes relevant for the neutralino annihilation signal at the GC, with realistic assumptions about the accretion flow and its magnetic properties. We find that neglecting these effects, as done in previous papers, leads to the incorrent electron and photon spectra. We find that the magnetic fields associated with the flow are significantly stronger than previously estimated. We derive the appropriate equilibrium distribution of electrons and positron and the resulting radiation, considering adiabatic compression in the accretion flow, inverse Compton scattering off synchrotron photons (synchrotron self-Compton scattering), and synchrotron self-absorption of the emitted radiation. We derive the signal for a Navarro-Frenk-White (NFW) dark matter halo profile and a NFW profile with a dark matter spike due to the central BH. We find that the observed radio emission from the GC is inconsistent with the scenario in which a spiky distribution of neutralinos is present. We discuss several important differences between our calculations and those previously presented in the literature.Comment: 19 pages, 11 eps figures, version accepted for publication in JCA

    VERITAS Observations of the gamma-Ray Binary LS I +61 303

    Get PDF
    LS I +61 303 is one of only a few high-mass X-ray binaries currently detected at high significance in very high energy gamma-rays. The system was observed over several orbital cycles (between September 2006 and February 2007) with the VERITAS array of imaging air-Cherenkov telescopes. A signal of gamma-rays with energies above 300 GeV is found with a statistical significance of 8.4 standard deviations. The detected flux is measured to be strongly variable; the maximum flux is found during most orbital cycles at apastron. The energy spectrum for the period of maximum emission can be characterized by a power law with a photon index of Gamma=2.40+-0.16_stat+-0.2_sys and a flux above 300 GeV corresponding to 15-20% of the flux from the Crab Nebula.Comment: accepted for publication in The Astrophysical Journa
    • …
    corecore