3 research outputs found

    Ru(II)‑<i>p</i>‑Cymene Complexes of Furoylthiourea Ligands for Anticancer Applications against Breast Cancer Cells

    No full text
    Half-sandwich Ru(II) complexes containing nitro-substituted furoylthiourea ligands, bearing the general formula [(η6-p-cymene)RuCl2(L)] (1–6) and [(η6-p-cymene)RuCl(L)(PPh3)]+ (7–-12), have been synthesized and characterized. In contrast to the spectroscopic data which revealed monodentate coordination of the ligands to the Ru(II) ion via a “S” atom, single crystal X-ray structures revealed an unusual bidentate N, S coordination with the metal center forming a four-membered ring. Interaction studies by absorption, emission, and viscosity measurements revealed intercalation of the Ru(II) complexes with calf thymus (CT) DNA. The complexes showed good interactions with bovine serum albumin (BSA) as well. Further, their cytotoxicity was explored exclusively against breast cancer cells, namely, MCF-7, T47-D, and MDA-MB-231, wherein all of the complexes were found to display more pronounced activity than their ligand counterparts. Complexes 7–12 bearing triphenylphosphine displayed significant cytotoxicity, among which complex 12 showed IC50 values of 0.6 ± 0.9, 0.1 ± 0.8, and 0.1 ± 0.2 μM against MCF-7, T47-D, and MDA-MB-231 cell lines, respectively. The most active complexes were tested for their mode of cell death through staining assays, which confirmed apoptosis. The upregulation of apoptotic inducing and downregulation of apoptotic suppressing proteins as inferred from the western blot analysis also corroborated the apoptotic mode of cell death. The active complexes effectively generated reactive oxygen species (ROS) in MDA-MB-231 cells as analyzed from the 2′,7′-dichlorofluorescein diacetate (DCFH-DA) staining. Finally, in vivo studies of the highly active complexes (6 and 12) were performed on the mice model. Histological analyses revealed that treatment with these complexes at high doses of up to 8 mg/kg did not induce any visible damage to the tested organs

    Ru(II)‑<i>p</i>‑Cymene Complexes of Furoylthiourea Ligands for Anticancer Applications against Breast Cancer Cells

    No full text
    Half-sandwich Ru(II) complexes containing nitro-substituted furoylthiourea ligands, bearing the general formula [(η6-p-cymene)RuCl2(L)] (1–6) and [(η6-p-cymene)RuCl(L)(PPh3)]+ (7–-12), have been synthesized and characterized. In contrast to the spectroscopic data which revealed monodentate coordination of the ligands to the Ru(II) ion via a “S” atom, single crystal X-ray structures revealed an unusual bidentate N, S coordination with the metal center forming a four-membered ring. Interaction studies by absorption, emission, and viscosity measurements revealed intercalation of the Ru(II) complexes with calf thymus (CT) DNA. The complexes showed good interactions with bovine serum albumin (BSA) as well. Further, their cytotoxicity was explored exclusively against breast cancer cells, namely, MCF-7, T47-D, and MDA-MB-231, wherein all of the complexes were found to display more pronounced activity than their ligand counterparts. Complexes 7–12 bearing triphenylphosphine displayed significant cytotoxicity, among which complex 12 showed IC50 values of 0.6 ± 0.9, 0.1 ± 0.8, and 0.1 ± 0.2 μM against MCF-7, T47-D, and MDA-MB-231 cell lines, respectively. The most active complexes were tested for their mode of cell death through staining assays, which confirmed apoptosis. The upregulation of apoptotic inducing and downregulation of apoptotic suppressing proteins as inferred from the western blot analysis also corroborated the apoptotic mode of cell death. The active complexes effectively generated reactive oxygen species (ROS) in MDA-MB-231 cells as analyzed from the 2′,7′-dichlorofluorescein diacetate (DCFH-DA) staining. Finally, in vivo studies of the highly active complexes (6 and 12) were performed on the mice model. Histological analyses revealed that treatment with these complexes at high doses of up to 8 mg/kg did not induce any visible damage to the tested organs

    Image_2_Transient Receptor Potential Vanilloid 1 Expression Mediates Capsaicin-Induced Cell Death.TIF

    No full text
    <p>The transient receptor potential (TRP) ion channel family consists of a broad variety of non-selective cation channels that integrate environmental physicochemical signals for dynamic homeostatic control. Involved in a variety of cellular physiological processes, TRP channels are fundamental to the control of the cell life cycle. TRP channels from the vanilloid (TRPV) family have been directly implicated in cell death. TRPV1 is activated by pain-inducing stimuli, including inflammatory endovanilloids and pungent exovanilloids, such as capsaicin (CAP). TRPV1 activation by high doses of CAP (>10 μM) leads to necrosis, but also exhibits apoptotic characteristics. However, CAP dose–response studies are lacking in order to determine whether CAP-induced cell death occurs preferentially via necrosis or apoptosis. In addition, it is not known whether cytosolic Ca<sup>2+</sup> and mitochondrial dysfunction participates in CAP-induced TRPV1-mediated cell death. By using TRPV1-transfected HeLa cells, we investigated the underlying mechanisms involved in CAP-induced TRPV1-mediated cell death, the dependence of CAP dose, and the participation of mitochondrial dysfunction and cytosolic Ca<sup>2+</sup> increase. Together, our results contribute to elucidate the pathophysiological steps that follow after TRPV1 stimulation with CAP. Low concentrations of CAP (1 μM) induce cell death by a mechanism involving a TRPV1-mediated rapid and transient intracellular Ca<sup>2+</sup> increase that stimulates plasma membrane depolarization, thereby compromising plasma membrane integrity and ultimately leading to cell death. Meanwhile, higher doses of CAP induce cell death via a TRPV1-independent mechanism, involving a slow and persistent intracellular Ca<sup>2+</sup> increase that induces mitochondrial dysfunction, plasma membrane depolarization, plasma membrane loss of integrity, and ultimately, cell death.</p
    corecore