108 research outputs found

    Analysis of the interaction of calcitriol with the disulfide isomerase ERp57

    Get PDF
    Calcitriol, the active form of vitamin D3, can regulate the gene expression through the binding to the nuclear receptor VDR, but it can also display nongenomic actions, acting through a membrane- associated receptor, which has been discovered as the disul de isomerase ERp57. The aim of our research is to identify the binding sites for calcitriol in ERp57 and to analyze their interaction. We rst studied the interaction through bioinformatics and uorimetric analyses. Subsequently, we focused on two protein mutants containing the predicted interaction domains with calcitriol: abb’- ERp57, containing the rst three domains, and a’-ERp57, the fourth domain only. To consolidate the achievements we used the calorimetric approach to the whole protein and its mutants. Our results allow us to hypothesize that the interaction with the a’ domain contributes to a greater extent than the other potential binding sites to the dissociation constant, calculated as a Kd of about 10−9 M

    Regulatory and structural properties differentiating the chromosomal and the bacteriophage-associated Escherichia coli O157:H7 Cu, Zn Superoxide Dismutases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Highly virulent enterohemorrhagic <it>Escherichia coli </it>O157:H7 strains possess three <it>sodC </it>genes encoding for periplasmic Cu, Zn superoxide dismutases: <it>sodC</it>, which is identical to the gene present in non-pathogenic <it>E. coli </it>strains, and <it>sodC</it>-F1 and <it>sodC</it>-F2, two nearly identical genes located within lambdoid prophage sequences. The significance of this apparent <it>sodC </it>redundancy in <it>E. coli </it>O157:H7 has not yet been investigated.</p> <p>Results</p> <p>We report that strains deleted of one or more <it>sodC </it>genes are less resistant than the wild type strain to a challenge with hydrogen peroxide, thus confirming their involvement in the bacterial antioxidant apparatus. To understand if the different <it>sodC </it>genes have truly overlapping functions, we have carried out a comparison of the functional, structural and regulatory properties of the various <it>E. coli </it>O157:H7 SodC enzymes. We have found that the chromosomal and prophagic <it>sodC </it>genes are differentially regulated <it>in vitro</it>. <it>sodC </it>is exclusively expressed in aerobic cultures grown to the stationary phase. In contrast, <it>sodC</it>-F1 and <it>sodC</it>-F2 are expressed also in the logarithmic phase and in anaerobic cultures. Moreover, the abundance of SodC-F1/SodC-F2 increases with respect to that of SodC in bacteria recovered from infected Caco-2 cells, suggesting higher expression/stability of SodC-F1/SodC-F2 in intracellular environments. This observation correlates with the properties of the proteins. In fact, monomeric SodC and dimeric SodC-F1/SodC-F2 are characterized by sharp differences in catalytic activity, metal affinity, protease resistance and stability.</p> <p>Conclusion</p> <p>Our data show that the chromosomal and bacteriophage-associated <it>E. coli </it>O157:H7 <it>sodC </it>genes have different regulatory properties and encode for proteins with distinct structural/functional features, suggesting that they likely play distinctive roles in bacterial protection from reactive oxygen species. In particular, dimeric SodC-F1 and SodC-F2 possess physico-chemical properties which make these enzymes more suitable than SodC to resist the harsh environmental conditions which are encountered by bacteria within the infected host.</p

    Structural basis for PPAR partial or full activation revealed by a novel ligand binding mode

    Get PDF
    The peroxisome proliferator-activated receptors (PPARs) are nuclear receptors involved in the regulation of the metabolic homeostasis and therefore represent valuable therapeutic targets for the treatment of metabolic diseases. The development of more balanced drugs interacting with PPARs, devoid of the side-effects showed by the currently marketed PPARλ 3 full agonists, is considered the major challenge for the pharmaceutical companies. Here we present a structure-based virtual screening approach that let us identify a novel PPAR pan-agonist with a very attractive activity profile and its crystal structure in the complex with PPARα and PPARλ 3, respectively. In PPARα this ligand occupies a new pocket whose filling is allowed by the ligand-induced switching of the F273 side chain from a closed to an open conformation. The comparison between this pocket and the corresponding cavity in PPARλ 3 provides a rationale for the different activation of the ligand towards PPARα and PPARλ 3, suggesting a novel basis for ligand design

    Intersubunit ionic interactions stabilize the nucleoside diphosphate kinase of <i>Mycobacterium tuberculosis</i>

    Get PDF
    Most nucleoside diphosphate kinases (NDPKs) are hexamers. The C-terminal tail interacting with the neighboring subunits is crucial for hexamer stability. In the NDPK from Mycobacterium tuberculosis (Mt) this tail is missing. The quaternary structure of Mt-NDPK is essential for full enzymatic activity and for protein stability to thermal and chemical denaturation. We identified the intersubunit salt bridge Arg(80)-Asp(93) as essential for hexamer stability, compensating for the decreased intersubunit contact area. Breaking the salt bridge by the mutation D93N dramatically decreased protein thermal stability. The mutation also decreased stability to denaturation by urea and guanidinium. The D93N mutant was still hexameric and retained full activity. When exposed to low concentrations of urea it dissociated into folded monomers followed by unfolding while dissociation and unfolding of the wild type simultaneously occur at higher urea concentrations. The dissociation step was not observed in guanidine hydrochloride, suggesting that low concentration of salt may stabilize the hexamer. Indeed, guanidinium and many other salts stabilized the hexamer with a half maximum effect of about 0.1 M, increasing protein thermostability. The crystal structure of the D93N mutant has been solved

    Cupricyclins, Novel Redox-Active Metallopeptides Based on Conotoxins Scaffold

    Get PDF
    Highly stable natural scaffolds which tolerate multiple amino acid substitutions represent the ideal starting point for the application of rational redesign strategies to develop new catalysts of potential biomedical and biotechnological interest. The knottins family of disulphide-constrained peptides display the desired characteristics, being highly stable and characterized by hypervariability of the inter-cysteine loops. The potential of knottins as scaffolds for the design of novel copper-based biocatalysts has been tested by engineering a metal binding site on two different variants of an ω-conotoxin, a neurotoxic peptide belonging to the knottins family. The binding site has been designed by computational modelling and the redesigned peptides have been synthesized and characterized by optical, fluorescence, electron spin resonance and nuclear magnetic resonance spectroscopy. The novel peptides, named Cupricyclin-1 and -2, bind one Cu2+ ion per molecule with nanomolar affinity. Cupricyclins display redox activity and catalyze the dismutation of superoxide anions with an activity comparable to that of non-peptidic superoxide dismutase mimics. We thus propose knottins as a novel scaffold for the design of catalytically-active mini metalloproteins

    Late solitary cerebral metastasis from renal carcinoma.

    No full text
    The authors describe 2 patients with solitary cerebral metastasis occurring 13 years after treatment for a renal tumor in one and 17 in the other. Both patients are alive 30 and 36 months after surgery respectively. The pathogenetic and therapeutic features typical of this type of solitary metastasis with late-onset are discussed
    • …
    corecore