9 research outputs found

    Binding of muscarinic toxins MTx1 and MTx2 from the venom of the green mamba Dendroaspis angusticeps to cloned human muscarinic cholinoceptors

    No full text
    Muscarinic toxins MTx1 and MTx2 are 7500 mol. wt polypeptides isolated from the venom of the green mamba snake Dendroaspis angusticeps. Previous competition binding studies indicate that the MTxs may be selective for the M1 subtype of muscarinic acetylcholine receptors. The present work was undertaken in order to clarify the muscarinic subtype specificity and functional effects of MTx1 and MTx2. Binding interactions were determined using 3H-N-methyl scopolamine (NMS) and cloned human muscarinic receptor subtypes m1, m2, m3 and m4. Some preliminary functional studies were performed on rabbit vas deferens preparations, which contain M1 cholinoceptors. MTx1 and MTx2 inhibited 3H-NMS binding to m1 and m3 receptors, with little effect on binding to m2 and m4 receptors. Affinity was higher for m1 receptors: Ki for MTx1 were 48 nM at m1 receptors and 72 nM at m3 receptors, and Ki for MTx2 were 364 nM at m1 and 1.2 microM at m3 receptors. At m1 receptors, about 90% of the binding of MTx1 and MTx2 appears to be irreversible. On rabbit vas deferens preparations, MTx1 and MTx2 at concentrations above 50 nM behaved in a similar way to the relatively selective M1-agonists McN-A-343 and CPCP (4-[N-(chlorophenyl)carbamoyloxy]-4-20-ynyl-trimethylammoniu m iodide) by reducing responses to nerve stimulation. The results confirm that MTx1 and MTx2 bind to m1 receptors rather than to m2 or m4 receptors, but they also reveal a slightly weaker effect at m3 receptors. The interaction at m1 receptors appears to be essentially irreversible, implying that the toxins could be useful tools in studies of the functional role of m1 muscarinic receptors

    Proteomic Identification of M.tuberculosis Protein Kinase Substrates: PknB Recruits GarA, a FHA Domain-containing Protein, Through Activation Loop-mediated Interactions

    No full text
    International audienceGenes for functional Ser/Thr protein kinases (STPKs) are ubiquitous in prokaryotic genomes, but little is known about their physiological substrates and their actual involvement in bacterial signal transduction pathways. We report here the identification of GarA (Rv1827), a Forkhead-associated (FHA) domain-containing protein, as a putative physiological substrate of PknB, an essential Ser/Thr protein kinase from Mycobacterium tuberculosis. Using a global proteomic approach, GarA was found to be the best detectable substrate of the PknB catalytic domain in non-denatured whole-cell protein extracts from M. tuberculosis and the saprophyte Mycobacterium smegmatis. Enzymological and binding studies of the recombinant proteins demonstrate that docking interactions between the activation loop of PknB and the C-terminal FHA domain of GarA are required to enable efficient phosphorylation at a single N-terminal threonine residue, Thr22, of the substrate. The predicted amino acid sequence of the garA gene, including both the N-terminal phosphorylation motif and the FHA domain, is strongly conserved in mycobacteria and other related actinomycetes, suggesting a functional role of GarA in putative STPK-mediated signal transduction pathways. The ensuing model of PknB-GarA interactions suggests a substrate recruitment mechanism that might apply to other mycobacterial kinases bearing multiple phosphorylation sites in their activation loops

    Proteomic identification of M. tuberculosis protein kinase substrates: PknB recruits GarA, a FHA domain-containing protein, through activation loop-mediated interactions

    No full text
    Genes for functional Ser/Thr protein kinases (STPKs) are ubiquitous in prokaryotic genomes, but little is known about their physiological substrates and their actual involvement in bacterial signal transduction pathways. We report here the identification of GarA (Rv1827), a Forkhead-associated (FHA) domain-containing protein, as a putative physiological substrate of PknB, an essential Ser/Thr protein kinase from Mycobacterium tuberculosis. Using a global proteomic approach, GarA was found to be the best detectable substrate of the PknB catalytic domain in non-denatured whole-cell protein extracts from M. tuberculosis and the saprophyte Mycobacterium smegmatis. Enzymological and binding studies of the recombinant proteins demonstrate that docking interactions between the activation loop of PknB and the C-terminal FHA domain of GarA are required to enable efficient phosphorylation at a single N-terminal threonine residue, Thr22, of the substrate. The predicted amino acid sequence of the garA gene, including both the N-terminal phosphorylation motif and the FHA domain, is strongly conserved in mycobacteria and other related actinomycetes, suggesting a functional role of GarA in putative STPK-mediated signal transduction pathways. The ensuing model of PknB-GarA interactions suggests a substrate recruitment mechanism that might apply to other mycobacterial kinases bearing multiple phosphorylation sites in their activation loops

    Identification of hemolytic and neuroactive fractions in the venom of the sea anemone Bunodosoma cangicum

    No full text
    Sea anemones are a rich source of biologically active substances. In crayfish muscle fibers, Bunodosoma cangicum whole venom selectively blocks the I K(Ca) currents. In the present study, we report for the first time powerful hemolytic and neuroactive effects present in two different fractions obtained by gel-filtration chromatography from whole venom of B. cangicum. A cytolytic fraction (Bcg-2) with components of molecular mass ranging from 8 to 18 kDa elicited hemolysis of mouse erythrocytes with an EC50 = 14 µg/ml and a maximum dose of 22 µg/ml. The effects of the neuroactive fraction, Bcg-3 (2 to 5 kDa), were studied on isolated crab nerves. This fraction prolonged the compound action potentials by increasing their duration and rise time in a dose-dependent manner. This effect was evident after the washout of the preparation, suggesting the existence of a reversible substance that was initially masking the effects of an irreversible one. In order to elucidate the target of Bcg-3 action, the fraction was applied to a tetraethylammonium-pretreated preparation. An additional increase in action potential duration was observed, suggesting a blockade of a different population of K+ channels or of tetraethylammonium-insensitive channels. Also, tetrodotoxin could not block the action potentials in a Bcg-3-pretreated preparation, suggesting a possible interaction of Bcg-3 with Na+ channels. The present data suggest that B. cangicum venom contains at least two bioactive fractions whose activity on cell membranes seems to differ from the I K(Ca) blockade described previously

    The Cation−π Interaction

    No full text
    corecore