1,028 research outputs found

    Probing equilibrium glass flow up to exapoise viscosities

    Get PDF
    Glasses are out-of-equilibrium systems aging under the crystallization threat. During ordinary glass formation, the atomic diffusion slows down rendering its experimental investigation impractically long, to the extent that a timescale divergence is taken for granted by many. We circumvent here these limitations, taking advantage of a wide family of glasses rapidly obtained by physical vapor deposition directly into the solid state, endowed with different "ages" rivaling those reached by standard cooling and waiting for millennia. Isothermally probing the mechanical response of each of these glasses, we infer a correspondence with viscosity along the equilibrium line, up to exapoise values. We find a dependence of the elastic modulus on the glass age, which, traced back to temperature steepness index of the viscosity, tears down one of the cornerstones of several glass transition theories: the dynamical divergence. Critically, our results suggest that the conventional wisdom picture of a glass ceasing to flow at finite temperature could be wrong.Comment: 4 figures and 1 supplementary figur

    Resonant optical control of the structural distortions that drive ultrafast demagnetization in Cr2_2O3_3

    Full text link
    We study how the color and polarization of ultrashort pulses of visible light can be used to control the demagnetization processes of the antiferromagnetic insulator Cr2_2O3_3. We utilize time-resolved second harmonic generation (SHG) to probe how changes in the magnetic and structural state evolve in time. We show that, varying the pump photon-energy to excite either localized transitions within the Cr or charge transfer states, leads to markedly different dynamics. Through a full polarization analysis of the SHG signal, symmetry considerations and density functional theory calculations, we show that, in the non-equilibrium state, SHG is sensitive to {\em both} lattice displacements and changes to the magnetic order, which allows us to conclude that different excited states couple to phonon modes of different symmetries. Furthermore, the spin-scattering rate depends on the induced distortion, enabling us to control the timescale for the demagnetization process. Our results suggest that selective photoexcitation of antiferromagnetic insulators allows fast and efficient manipulation of their magnetic state.Comment: 7 pages, 5 figure

    Incomplete ileocecal bypass for ileal pathology in horses: 21 cases (2012–2019)

    Get PDF
    Background: Incomplete ileocecal bypass can be performed in cases in which an ileal disfunction is suspected but resection of the diseased ileum is not necessary. Objectives: To describe the clinical findings, the surgical technique, and the outcome of 21 cases of colic with ileal pathologies that underwent an incomplete ileocecal bypass. Methods: Historical, clinical, and surgical features of cases diagnosed with pathologies involving the ileum or the ileocecal valve that underwent ileocecal anastomosis without ileal resection were retrieved. Clinical (heart rate, duration of symptoms, presence of reflux, age, weight at arrival) and surgical (surgical pathology, duration of surgery, type of anastomosis) data were retrieved and analysed. Data on short term survival and postoperative complications (colic, post-operative reflux, incisional infection, fever), length of hospital stay, and long term follow up were also obtained. Results: A total of 21 horses met the criteria; 13 horses had ileal impaction (one with muscular hypertrophy), 5 horses had epiploic foramen entrapment, and 3 horses had a pedunculated lipoma. An incomplete ileocecal bypass was performed with a two-layer hand-sewn side-to-side technique in 19 cases and with a stapled side-to-side technique in 2 cases. Short term survival was 95.2%. At 12-months follow up, all horses but two were alive, and 13 of the 14 sport horses returned to their previous level of activity. Long term survival was 90.47%. Conclusions Incomplete ileocecal bypass may represent a valid surgical technique in case of ileocecal valve disfunction when ileum resection is not necessary; this technique may represent an alternative to extensive manipulation without subsequent recurrence of ileal impaction

    Ultrafast hot electron dynamics in plasmonic nanostructures: Experiments, modelling, design

    Get PDF
    Metallic nanostructures exhibit localized surface plasmons (LSPs), which offer unprecedented opportunities for advanced photonic materials and devices. Following resonant photoexcitation, LSPs quickly dephase, giving rise to a distribution of energetic ‘hot’ electrons in the metal. These out-of-equilibrium carriers undergo ultrafast internal relaxation processes, nowadays pivotal in a variety of applications, from photodetection and sensing to the driving of photochemical reactions and ultrafast all-optical modulation of light. Despite the intense research activity, exploitation of hot carriers for real-world nanophotonic devices remains extremely challenging. This is due to the com- plexity inherent to hot carrier relaxation phenomena at the nanoscale, involving short-lived out-of-equilibrium electronic states over a very broad range of energies, in interaction with thermal electronic and phononic baths. These issues call for a comprehensive understanding of ultrafast hot electron dynamics in plasmonic nanostructures. This paper aims to review our contribution to the field: starting from the fundamental physics of plasmonic nanostructures, we first describe the experimental techniques used to probe hot electrons; we then introduce a numerical model of ultrafast nanoscale relaxation processes, and present examples in which experiments and modelling are combined, with the aim of designing novel optical functionalities enabled by ultrafast hot-electron dynamics

    The coherent dynamics of photoexcited green fluorescent proteins

    Get PDF
    The coherent dynamics of vibronic wave packets in the green fluorescent protein is reported. At room temperature the non-stationary dynamics following impulsive photoexcitation displays an oscillating optical transmissivity pattern with components at 67 fs (497 cm-1) and 59 fs (593 cm-1). Our results are complemented by ab initio calculations of the vibrational spectrum of the chromophore. This analysis shows the interplay between the dynamics of the aminoacidic structure and the electronic excitation in the primary optical events of green fluorescent proteins.Comment: accepted for publication in Physical Review Letter

    Nonequilibrium dynamics of photoexcited electrons in graphene: Collinear scattering, Auger processes, and the impact of screening

    Get PDF
    We present a combined analytical and numerical study of the early stages (sub-100fs) of the non-equilibrium dynamics of photo-excited electrons in graphene. We employ the semiclassical Boltzmann equation with a collision integral that includes contributions from electron-electron (e-e) and electron-optical phonon interactions. Taking advantage of circular symmetry and employing the massless Dirac Fermion (MDF) Hamiltonian, we are able to perform an essentially analytical study of the e-e contribution to the collision integral. This allows us to take particular care of subtle collinear scattering processes - processes in which incoming and outgoing momenta of the scattering particles lie on the same line - including carrier multiplication (CM) and Auger recombination (AR). These processes have a vanishing phase space for two dimensional MDF bare bands. However, we argue that electron-lifetime effects, seen in experiments based on angle-resolved photoemission spectroscopy, provide a natural pathway to regularize this pathology, yielding a finite contribution due to CM and AR to the Coulomb collision integral. Finally, we discuss in detail the role of physics beyond the Fermi golden rule by including screening in the matrix element of the Coulomb interaction at the level of the Random Phase Approximation (RPA), focusing in particular on the consequences of various approximations including static RPA screening, which maximizes the impact of CM and AR processes, and dynamical RPA screening, which completely suppresses them
    • …
    corecore