121 research outputs found

    Endophytic Fungi: Are they Potential Candidates for the Production of Polyunsaturated Fatty Acids?

    Get PDF
    One hundred and fifty endophytic fungi were isolated from different plant samples. Their total lipid and fatty acid profile were analysed. Our results show that the total lipid content in 50% of the isolated endophytic fungi ranged between10-14% and in the remaining 50% ranged between 7-9%. None of the endophytic fungi tested were found to be oleaginous in nature (accumulating more than 20% lipid). The endophytic fungi produced saturated fatty acids i.e palmitic acid, stearic acid, and monounsaturated- oleic acid in the range of 13-23%, linoleic acid from 40-50%, and alpha-linolenic acid- 2-14%. Few endophytic fungi accumulated arachidonic acid in a very low concentration i.e. 0.1-0.3%. The results of our study suggest that, endophytic fungi are capable of producing the precursors of PUFAs i.e. linoleic acid and alpha-linolenic acid but not the pharmaceutically important PUFA’s as such. Our work also revealed that, there is not much difference in fatty acid profile of all the endophytic fungi isolated by us, irrespective of the differences in the living conditions (such as nutritional and environmental parameters) of the plants from which they were isolate

    Production of Long Chain Fatty Alcohols Found in Bumblebee Pheromones by Yarrowia lipolytica

    Get PDF
    Fatty alcohols (FA-OH) are aliphatic unbranched primary alcohols with a chain of four or more carbon atoms. Besides potential industrial applications, fatty alcohols have important biological functions as well. In nature, fatty alcohols are produced as a part of a mixture of pheromones in several insect species, such as moths, termites, bees, wasps, etc. In addition, FA-OHs have a potential for agricultural applications, for example, they may be used as a suitable substitute for commercial insecticides. The insecticides have several drawbacks associated with their preparation, and they exert a negative impact on the environment. Currently, pheromone components are prepared mainly through the catalytic hydrogenation of plant oils and petrochemicals, which is an unsustainable, ecologically unfriendly, and highly expensive process. The biotechnological production of the pheromone components using engineered microbial strains and through the expression of the enzymes participating in the biosynthesis of these components is a promising approach that ensures ecological sustenance as well. The present study was aimed at evaluating the production of FA-OHs in the oleaginous yeast, Yarrowia lipolytica, with different lengths of fatty-acyl chains by expressing the fatty acyl-CoA reductase (FAR) BlapFAR4 from B. lapidarius, producing C16:0-OH, C16:1Δ9-OH, and lower quantities of both C14:0-OH and C18:1Δ9-OH, and BlucFAR1 from B. lucorum, producing FA-OHs with a chain length of 18–26 carbon atoms, in this yeast. Among the different novel Y. lipolytica strains used in the present study, the best results were obtained with JMY7086, which carried several lipid metabolism modifications and expressed the BlucFAR1 gene under the control of a strong constitutive promoter 8UAS-pTEF. JMY7086 produced only saturated fatty alcohols with chain lengths from 18 to 24 carbon atoms. The highest titer and accumulation achieved were 166.6 mg/L and 15.6 mg/g DCW of fatty alcohols, respectively. Unlike JMY7086, the BlapFAR4-expressing strain JMY7090 produced only 16 carbon atom-long FA-OHs with a titer of 14.6 mg/L

    Modeling lipid accumulation in oleaginous fungi in chemostat cultures. II: Validation of the chemostat model using yeast culture data from literature

    Get PDF
    A model that predicts cell growth, lipid accumulation and substrate consumption of oleaginous fungi in chemostat cultures (Meeuwse et al. in Bioproc Biosyst Eng. doi:10.1007/s00449-011-0545-8, 2011) was validated using 12 published data sets for chemostat cultures of oleaginous yeasts and one published data set for a poly-hydroxyalkanoate accumulating bacterial species. The model could describe all data sets well with only minor modifications that do not affect the key assumptions, i.e. (1) oleaginous yeasts and fungi give the highest priority to C-source utilization for maintenance, second priority to growth and third priority to lipid accumulation, and (2) oleaginous yeasts and fungi have a growth rate independent maximum specific lipid production rate. The analysis of all data showed that the maximum specific lipid production rate is in most cases very close to the specific production rate of membrane and other functional lipids for cells growing at their maximum specific growth rate. The limiting factor suggested by Ykema et al. (in Biotechnol Bioeng 34:1268–1276, 1989), i.e. the maximum glucose uptake rate, did not give good predictions of the maximum lipid production rate

    Modeling growth, lipid accumulation and lipid turnover in submerged batch cultures of Umbelopsis isabellina

    Get PDF
    The production of lipids by oleaginous yeast and fungi becomes more important because these lipids can be used for biodiesel production. To understand the process of lipid production better, we developed a model for growth, lipid production and lipid turnover in submerged batch fermentation. This model describes three subsequent phases: exponential growth when both a C-source and an N-source are available, carbohydrate and lipid production when the N-source is exhausted and turnover of accumulated lipids when the C-source is exhausted. The model was validated with submerged batch cultures of the fungus Umbelopsis isabellina (formerly known as Mortierella isabellina) with two different initial C/N-ratios. Comparison with chemostat cultures with the same strain showed a significant difference in lipid production: in batch cultures, the initial specific lipid production rate was almost four times higher than in chemostat cultures but it decreased exponentially in time, while the maximum specific lipid production rate in chemostat cultures was independent of residence time. This indicates that different mechanisms for lipid production are active in batch and chemostat cultures. The model could also describe data for submerged batch cultures from literature well

    The state of Fortran

    Get PDF
    A community of developers has formed to modernize the Fortran ecosystem. In this article, we describe the high-level features of Fortran that continue to make it a good choice for scientists and engineers in the 21st century. Ongoing efforts include the development of a Fortran standard library and package manager, the fostering of a friendly and welcoming online community, improved compiler support, and language feature development. The lessons learned are common across contemporary programming languages and help reduce the learning curve and increase adoption of Fortran
    corecore