4,627 research outputs found

    Temperature dependence of the first order Raman scattering in thin films of mc-Si:H

    Get PDF
    The temperature effect on microcrystalline silicon (mc-Si:H) films produced by R.F. magnetron sputtering has been studied by Raman spectroscopy. The thermal behaviour of mc-Si:H films and crystalline silicon is compared and interpreted on the basis of anharmonic effects. We have studied the first order Raman spectra of our films for several Ar+ laser powers. Our results show a blue shift and a broadening of the Raman spectra with increasing the laser power. This effect is not due to structural changes since it is reproducible. The sample temperature has been calculated according to the well known relation between Stokes and anti-Stokes components. Our results show that the temperature effect is stronger in mc-Si:H than in crystalline silicon. This difference can be attributed to the size of the microcrystals, which are imbedded in a amorphous matrix surrounded by a third phase called grain boundary

    Photoluminescence of erbium doped microcrystalline silicon thin films produced by reactive magnetron sputtering

    Get PDF
    Microcrystalline silicon thin films doped with erbium were produced by RF sputtering and their structural, chemical and optical properties were studied by X-ray diffractometry at grazing incidence, Rutherford back scattering and optical transmission spectroscopy. The samples exhibit a sharp photoluminescence (PL) spectrum from the Er centres with the strongest peak positioned at 1.536 microm with a full width at half maximum of about 8 nm. When the temperature varies between 5K and 300K the photoluminescence decreases only five fold, in contrast to the behaviour reported for monocrystalline silicon

    Structural characterization of μc-Si:H films produced by R.F. magnetron sputtering

    Get PDF
    Microcrystalline silicon thin films were produced by R.F. magnetron sputtering. The microstructure of these films has been studied by X-ray diffraction, transmission electron microscopy (TEM) and Raman spectroscopy. Average values of crystalline size and strain obtained by the different tecnhiques used are critically compared and the reasons for the differences are discussed

    Improvement of the inhibitory effect of xanthones on NO production by encapsulation in PLGA nanocapsules

    Get PDF
    For the first time the inhibitory effect of xanthone and 3-methoxyxanthone on nitric oxide (NO) production by IFN-gamma/LPS activated J774 macrophage cell line is reported. A remarkable improvement of this effect promoted by encapsulation of these compounds in nanocapsules of Poly (DL-lactide-co-glycolide) (PLGA) is also demonstrated. A weak inhibitory effect of 3.6% on NO production by activated macrophages was observed for xanthone at the highest studied concentration (100 mu M). This effect was slightly higher for 3-methoxyxanthone at the same concentration, producing a reduction of 16.5% on NO production. In contrast, equivalent concentrations of xanthone and 3-methoxyxanthone incorporated in nanocapsules produced a significant decrease on NO production of 91.8 and 80.0%, respectively. Empty nanocapsules also exhibited a slight NO inhibitory activity, which may be due to the presence of soybean lecithin in the composition of the nanosystems. The viability of the macrophages was not affected either by free or nanoencapsulated xanthones. Fluorescence microscopy analysis confirmed that a phagocytic process was involved in the macrophage uptake of xanthone- and 3-methoxyxanthone-loaded PLGA nanocapsules. Phagocytosis might be the main mechanism responsible for the enhancement of the intracellular delivery of both compounds and consequently for the improvement of their biological effect

    Microcrystalline silicon thin films prepared by RF reactive magnetron sputter deposition

    Get PDF
    Hydrogenated microcrystalline silicon (microc-Si:H) thin films with Cu as a dopant material (about 2 wt.%) were deposited by RF planar magnetron sputtering in an argon/hydrogen plasma. The composition and microstructure of the films were analysed by SEM, ERD/RBS, X-ray diffraction and Raman spectroscopy. These techniques revealed a columnar film structure, each column consisting of several small (nano) crystals with a lateral dimension up to 10nm. The crystals are oriented, generally with the (111) plane parallel to the sample surface. The hydrogen content of the thin films is about 27-33 at.%. Low deposition rates and low sputter gas pressures favour crystallisation and grain growth. The behaviour can be understood in terms of the diffusion or relaxation length of the deposited Si-atoms

    Study on excimer laser irradiation for controlled dehydrogenation and crystallization of boron doped hydrogenated amorphous/nanocrystalline silicon multilayers

    Get PDF
    We report on the excimer laser annealing (ELA) induced temperature gradients, allowing controlled crystal-lization and dehydrogenation of boron-doped a-Si:H/nc-Si:H multilayers. Depth of the dehydrogenation and crystallization process has been studied numerically and experimentally, showing that temperatures below the monohydride decomposition can be used and that significant changes of the doping profile can be avoided. Calculation of temperature profiles has been achieved through numerical modeling of the heat conduction differential equation. Increase in the amount of nano-crystals, but not in their size, has been demonstrated by Raman spectroscopy. Effective dehydrogenation and shape of the boron profile have been studied by time of flight secondary ion mass spectroscopy. The relatively low temperature threshold for dehydrogenation, below the monohydride decomposition temperature, has been attributed to both, the large hydrogen content of the original films and the partial crystallization during the ELA process. The results of this study show that UV-laser irradiation is an effective tool to improve crystallinity and dopant activation in p+-nc-Si:H films without damaging the substrate.Fundação para a Ciência e Tecnologia (FCT)CRUP Spanish–Portuguese bilateral agreement HP2006- 0122Spanish national and regional research contracts: MAT-2000-1050, MAT-2003-04908MAT-2011-24077, PGIDIT03-04908, PGIDT-01PX130301PN, XUGA- Infra 93, XUGA-Infra 94-58, SB93-A0742819D and INFRA 99-PR 405a-46

    Structural studies and influence of the structure on the electrical and optical properties of microcrystalline silicon thin films produced by RF sputtering

    Get PDF
    Microcrystalline silicon thin films were produced by reactive magnetron sputtering on glass substrates under several different conditions (RF power and gas mixture composition). The film structure was studied by X-ray diffractometry (XRD), transmission electron microscopy (TEM) and Raman spectroscopy, allowing the determination of crystal sizes, crystallinity and mechanical strain. These parameters were evaluated by fitting a pseudo-Voigt function to the X-ray data, and by the application of the strong phonon confinement model to the Raman spectra. The degree of crystallinity and the presence of single crystals or crystal agglomerates, which was confirmed by TEM, depends on the preparation conditions, and strongly affects the optical spectra and the electrical transport properties.Fundação para a Ciência e a Tecnologia (FCT) - PRAXIS XX

    Crystal size and crystalline volume fraction effects on the Erbium emission of nc-Si:Er grown by r.f. sputtering

    Get PDF
    Erbium-doped low-dimensional Si films with different microstructures were grown by reactive magnetron sputtering on glass substrates by varying the deposition parameters. Their structure and chemical composition were studied by micro-Raman and Rutherford backscattering spectrometry, respectively. In this contribution the Erbium emission is studied as a function of nanocrystalline fraction and average crystal sizes and also as a function of the matrix chemical composition. We discuss the temperature dependence of the Er3+ emission as well as the possible explanations of the low Er active fraction.FCT (POCTI/CTM/39395) and INTAS Project #03-51-6486

    Microstrucure and thermal features a-Si:H and nc-Si:H thin films produced by r.f. sputtering

    Get PDF
    Amorphous and nanocrystalline silicon thin films have been produced by reactive r.f. sputtering and their microstructure, optical and thermal properties were evaluated. A good correlation was found between the microstructure determined by Raman spectroscopy and X-ray diffraction and the thermal transport parametersFCT Project POCTI / CTM / 39395 / 200
    corecore