12 research outputs found

    Structure of quantum disordered wave functions: weak localization, far tails, and mesoscopic transport

    Full text link
    We report on the comprehensive numerical study of the fluctuation and correlation properties of wave functions in three-dimensional mesoscopic diffusive conductors. Several large sets of nanoscale samples with finite metallic conductance, modeled by an Anderson model with different strengths of diagonal box disorder, have been generated in order to investigate both small and large deviations (as well as the connection between them) of the distribution function of eigenstate amplitudes from the universal prediction of random matrix theory. We find that small, weak localization-type, deviations contain both diffusive contributions (determined by the bulk and boundary conditions dependent terms) and ballistic ones which are generated by electron dynamics below the length scale set by the mean free path ell. By relating the extracted parameters of the functional form of nonperturbative deviations (``far tails'') to the exactly calculated transport properties of mesoscopic conductors, we compare our findings based on the full solution of the Schrodinger equation to different approximative analytical treatments. We find that statistics in the far tail can be explained by the exp-log-cube asymptotics (convincingly refuting the log-normal alternative), but with parameters whose dependence on ell is linear and, therefore, expected to be dominated by ballistic effects. It is demonstrated that both small deviations and far tails depend explicitly on the sample size--the remaining puzzle then is the evolution of the far tail parameters with the size of the conductor since short-scale physics is supposedly insensitive to the sample boundaries.Comment: 13 pages, 9 embedded EPS figures, expanded discussion (with extra one figure) on small size effec

    Boundary hopping and the mobility edge in the Anderson model in three dimensions

    Full text link
    It is shown, using high-precision numerical simulations, that the mobility edge of the 3d Anderson model depends on the boundary hopping term t in the infinite size limit. The critical exponent is independent of it. The renormalized localization length at the critical point is also found to depend on t but not on the distribution of on-site energies for box and Lorentzian distributions. Implications of results for the description of the transition in terms of a local order-parameter are discussed

    Mehanizam gašenja fotoluminescencije u tankim filmovima N,N'-bis(3-methylphenyl)-N,N'-bis(phenyl)benzidine osvetljenih UV svetlošću u vazduhu

    Get PDF
    The mechanism of photoluminescence (PL) quenching of thin amorphous N,N'-bis(3-methylphenyl)- N,N'-bis(phenyl)benzidine (TPD) films exposed to UV light in air is studied. TPD is small organic molecule widely used in production of organic light emmiting devices (OLEDs). Photoluminescence of TPD films decays exponentially with time of irradiation, i.e. with the increase of concentration of impurities (photo-oxidized TPD molecules) generated by UV irradiation in air. Intensity of PL decreases to half of its original value when the concentration of impurities reaches 0.4%. Average distance between impurities (acceptors) is almost an order of magnitude larger than average distance between host TPD molecules (donors). Direct long range Forster energy transfer is ruled out as the mechanism of PL quenching, as the overlap between donor and acceptor is lacking, and exciton self-diffusion in TPD films is postulated for the mechanism. The presence of oxidation products is confirmed by infrared (IR) spectroscopy. Vibrational spectra of TPD molecule and few other possible products of photo-oxidation of TPD molecule, obtained by density functional theory, are compared to experimental IR spectra.U ovom radu je prikazana studija mehanizma gašenja fotoluminescencije (FL) tankih amorfnih filmova N,N'-bis(3-methylphenyl)-N,N'-bis(phenyl)benzidine (TPD) izloženih UV zračenju u vazduhu. TPD je organski molekul koji se često koristi u izradi organskih svetlećih dioda (OLED). Prilikom izlaganja TPD filmova UV zračenju u vazduhu, dolazi do fotooksidacije TPD molekula, te iz tog razloga fotoluminescencija TPD filmova opada eksponencijalno sa vremenom osvetljavanja filmova, odnosno sa povećanjem koncentracije nečistoća nastalih usled fotooksidacije. Intenzitet fotoluminescencije opadne na polovinu svoje početne vrednosti u slučaju kada je 0.4 % nečistoća prisutno u filmu. U tom slučaju je srednje rastojanje između nečistoća (akceptora) šest puta veće od srednjeg rastojanja između TPD molekula (donora). Direktan dugodometni Forsterov transfer energije je odbačen kao mehanizam gašenja fotoluminescencije jer je spektralno preklapanje emisije donora i apsorpcije akceptora zanemarljivo. Iz ovog razloga je postulirana ekscitonska difuzija u TPD filmovima, analogno nalazima u postojećoj literaturi. Prisustvo produkata oksidacije je potvrđeno uz pomoć infracrvene (IR) spektroskopije. Takodje, izračunat je IR spektar koristeći teoriju funkcionala gustine (DFT) i dobijeno je dobro slaganje sa eksperimentalnim rezultatima

    Bond-disordered Anderson model on a two dimensional square lattice - chiral symmetry and restoration of one-parameter scaling

    Full text link
    Bond-disordered Anderson model in two dimensions on a square lattice is studied numerically near the band center by calculating density of states (DoS), multifractal properties of eigenstates and the localization length. DoS divergence at the band center is studied and compared with Gade's result [Nucl. Phys. B 398, 499 (1993)] and the powerlaw. Although Gade's form describes accurately DoS of finite size systems near the band-center, it fails to describe the calculated part of DoS of the infinite system, and a new expression is proposed. Study of the level spacing distributions reveals that the state closest to the band center and the next one have different level spacing distribution than the pairs of states away from the band center. Multifractal properties of finite systems furthermore show that scaling of eigenstates changes discontinuously near the band center. This unusual behavior suggests the existence of a new divergent length scale, whose existence is explained as the finite size manifestation of the band center critical point of the infinite system, and the critical exponent of the correlation length is calculated by a finite size scaling. Furthermore, study of scaling of Lyapunov exponents of transfer matrices of long stripes indicates that for a long stripe of any width there is an energy region around band center within which the Lyapunov exponents cannot be described by one-parameter scaling. This region, however, vanishes in the limit of the infinite square lattice when one-parameter scaling is restored, and the scaling exponent calculated, in agreement with the result of the finite size scaling analysis.Comment: 23 pages, 11 figures. RevTe

    Nanosolvation-induced stabilization of a protonated peptide dimer isolated in the gas phase.

    No full text
    Clef UT : 000321298800048International audienceA dash of water: Nanosolvation of a leucine-enkephalin peptide dimer by only three water molecules has a dramatic impact on its stability to VUV photon irradiation. A drastic reduction of the fragmentation abundance of the hydrated protonated peptide dimer precursor, isolated in the gas phase, was observed. Calculations show that hydration in fact stabilizes the dimer structure

    VUV photofragmentation of protonated leucine-enkephalin peptide dimer below ionization energy

    No full text
    The experimental investigation of 5-8 eV photons induced dissociation of the leucine-enkephalin (Leu-Enk) peptide dimer, performed by coupling a linear ion trap with a synchrotron beamline, in combination with the tandem mass spectrometry, has been reported. The present work extends the existing results on Leu-Enk VUV-induced dissociation to lower sub-ionization photon energy range. The measured tandem mass spectra show that even at the photon energies below the ionization threshold, VUV irradiation of the protonated Leu-Enk dimer precursor can lead to a rich fragmentation pattern, including peptide sequence ions and neutral losses. The photodissociation yields of selected ionic fragments reveal the absorption bands at about 6.7-7.1 eV (185-175 nm). The experimental results have been supported by theoretical description of the [2Leu-Enk + H](+) precursors, optimized at B3LYP/6-31+G(d,p) level of DFT
    corecore