14 research outputs found

    The Cancer Research UK Stratified Medicine Programme as a model for delivering personalised cancer care

    Get PDF
    Genomic screening is routinely used to guide the treatment of cancer patients in many countries. However, several multi-layered factors make this effort difficult to deliver within a clinically relevant timeframe. Here we share the learnings from the CRUK-funded Stratified Medicine Programme for advanced NSCLC patients, which could be useful to better plan future studies

    CM-Path Molecular Diagnostics Forum-consensus statement on the development and implementation of molecular diagnostic tests in the United Kingdom.

    Get PDF
    BACKGROUND: Pathology has evolved from a purely morphological description of cellular alterations in disease to our current ability to interrogate tissues with multiple 'omics' technologies. By utilising these techniques and others, 'molecular diagnostics' acts as the cornerstone of precision/personalised medicine by attempting to match the underlying disease mechanisms to the most appropriate targeted therapy. METHODS: Despite the promises of molecular diagnostics, significant barriers have impeded its widespread clinical adoption. Thus, the National Cancer Research Institute (NCRI) Cellular Molecular Pathology (CM-Path) initiative convened a national Molecular Diagnostics Forum to facilitate closer collaboration between clinicians, academia, industry, regulators and other key stakeholders in an attempt to overcome these. RESULTS: We agreed on a consensus 'roadmap' that should be followed during development and implementation of new molecular diagnostic tests. We identified key barriers to efficient implementation and propose possible solutions to these. In addition, we discussed the recent reconfiguration of molecular diagnostic services in NHS England and its likely impacts. CONCLUSIONS: We anticipate that this consensus statement will provide practical advice to those involved in the development of novel molecular diagnostic tests. Although primarily focusing on test adoption within the United Kingdom, we also refer to international guidelines to maximise the applicability of our recommendations

    Homocysteine, reactive oxygen species and nitric oxide in type 2 diabetes mellitus

    No full text
    INTRODUCTION: Type 2 diabetes mellitus shows a characteristic altered platelet function that can be due to several mechanisms such as oxidative stress. Hyperhomocysteinemia, considered as a risk factor for various arterial thrombosis, may have a role in generating oxidative damage, even if the pathogenic mechanisms are still not clear. In this report we aimed to determine the role of plasma homocysteine in inducing oxidative stress in type 2 diabetes mellitus. MATERIALS AND METHODS: The study was performed on a group of 34 males with type 2 diabetes and 36 healthy subjects matched for sex and age. Patients and healthy subjects were undergone to laboratory evaluation for plasma homocysteine levels and other metabolic parameters. In both groups of subjects platelet reactive oxygen species, nitric oxide and guanosine 3',5' cyclic monophosphate levels were measured. Moreover the reduced glutathione content in platelets of patients and of healthy subjects was assayed. RESULTS: Plasma homocysteine levels were significantly increased in patients compared with healthy subjects. The basal level of reactive oxygen species was significantly higher in patients than in controls. In addition platelets of patients stimulated with thrombin produced more reactive oxygen species than healthy subjects ones. The nitric oxide, guanosine 3',5' cyclic monophosphate and reduced glutathione content were decreased in platelets of patients. CONCLUSIONS: As homocysteine stimulates oxidative stress and inhibits nitric oxide formation, hyperhomocysteinemia measured in type 2 diabetic patients, promoting platelet hyperactivity, could have a role in the atherogenic effects described in type 2 diabetes
    corecore