9 research outputs found

    The Anti-Cancer Effect of Mangifera indica L. Peel Extract is Associated to ÎłH2AX-mediated Apoptosis in Colon Cancer Cells

    Get PDF
    Ethanolic extracts from Mangifera indica L. have been proved to possess anti-tumor properties in many cancer systems. However, although most effects have been demonstrated with fruit pulp extract, the underlying molecular mechanisms of mango peel are still unclear. This study was designed to explore the effects of mango peel extract (MPE) on colon cancer cell lines. MPE affected cell viability and inhibited the colony formation trend of tumor cells, while no effects were observed in human dermal fibroblasts used as a non-cancerous cell line model. These events were a consequence of the induction of apoptosis associated to reactive oxygen species (ROS) production, activation of players of the oxidative response such as JNK and ERK1/2, and the increase in Nrf2 and manganese superoxide dismutase (MnSOD). Significantly, mango peel-activated stress triggered a DNA damage response evidenced by the precocious phosphorylation of histone 2AX (ÎłH2AX), as well as phosphorylated Ataxia telangiectasia-mutated (ATM) kinase and p53 upregulation. Mango peel extract was also characterized, and HPLC/MS (High Performance Liquid Chromatography/Mass Spectrometry) analysis unveiled the presence of some phenolic compounds that could be responsible for the anti-cancer effects. Collectively, these findings point out the importance of the genotoxic stress signaling pathway mediated by ÎłH2AX in targeting colon tumor cells to apoptosis

    Ethanol-mediated stress promotes autophagic survival and aggressiveness of colon cancer cells via activation of Nrf2/HO-1 pathway

    Get PDF
    Epidemiological studies suggest that chronic alcohol consumption is a lifestyle risk factor strongly associated with colorectal cancer development and progression. The aim of the present study was to examine the effect of ethanol (EtOH) on survival and progression of three different colon cancer cell lines (HCT116, HT29, and Caco-2). Our data showed that EtOH induces oxidative and endoplasmic reticulum (ER) stress, as demonstrated by reactive oxygen species (ROS) and ER stress markers Grp78, ATF6, PERK and, CHOP increase. Moreover, EtOH triggers an autophagic response which is accompanied by the upregulation of beclin, LC3-II, ATG7, and p62 proteins. The addition of the antioxidant N-acetylcysteine significantly prevents autophagy, suggesting that autophagy is triggered by oxidative stress as a prosurvival response. EtOH treatment also upregulates the antioxidant enzymes SOD, catalase, and heme oxygenase (HO-1) and promotes the nuclear translocation of both Nrf2 and HO-1. Interestingly, EtOH also upregulates the levels of matrix metalloproteases (MMP2 and MMP9) and VEGF. Nrf2 silencing or preventing HO-1 nuclear translocation by the protease inhibitor E64d abrogates the EtOH-induced increase in the antioxidant enzyme levels as well as the migration markers. Taken together, our results suggest that EtOH mediates both the activation of Nrf2 and HO-1 to sustain colon cancer cell survival, thus leading to the acquisition of a more aggressive phenotype

    Hidden biochemical action of Ethanol on colon carcinoma cell models

    Get PDF
    Colorectal cancer (CRC) is one of the most widespread cancers in the world. Numerous risk factors have been correlated with the development of CRC, including genetic factors, inflammation, intestinal microflora composition, as well as lifestyle factors, such as smoking, high consumption of red meats and alcohol intake. Epidemiological studies support the conclusion that chronic and heavy alcohol consumption increases the risk to develop CRC as well as favors the progression of this form of cancer. However, the biochemical mechanisms responsible for these events have not yet been fully clarified. The aim of my doctoral project was to study the effects of ethanol in human colorectal carcinoma cells in culture and to evaluate its molecular action mechanism. In particular, my research focused on the identification of one or more molecules involved both in the survival of the tumor cells and, especially, in tumor progression and invasiveness. To this end, I investigated the effect of high doses of ethanol on survival and progression of three different colon cancer cells (HCT116 , HT29 and Caco2 cells). The results demonstrated that ethanol promotes oxidative and ER stress in colon cancer cells as demonstrated by ROS increase and upregulation of ER markers Grp78 and CHOP. Despite the activation of stress, colon cancer cells did not present sign of toxicity because they are able to activate an autophagic survival mechanism. Moreover, in response to oxidative stress, ethanol promoted nuclear translocation of Nrf2 and upregulated the level of the antioxidant enzymes SOD, catalase and heme-oxygenase (HO-1). Silencing Nrf2 in HCT116 cells abrogated the effect of ethanol on upregulation of SOD and HO-1, thereby suggesting that the induction of antioxidant enzymes is dependent on Nrf2 activation. Interestingly, ethanol also promoted HO-1 nuclear translocation. Preventing HO-1 nuclear translocation by addition of E64d, the activation of antioxidant response by Nrf2 was reduced. Finally, the results demonstrated that the activation of Nrf2/HO-1 axis induced by ethanol is also responsible for the induction of MMP-2 and VEGF, two well known factors favoring cellular invasiveness

    Sicilian litchi fruit extracts induce autophagy versus apoptosis switch in human colon cancer cells

    Get PDF
    Litchi chinensis Sonnerat is a tropical tree whose fruits contain significant amounts of bioactive polyphenols. Litchi cultivation has recently spread in Sicily where the climate conditions are particularly favorable for this crop. Recent findings have shown that Litchi extracts display anti-tumor and pro-apoptotic effects in vitro, but the precise underlying mechanisms have not been fully elucidated. In this study, we report for the first time the effects of Sicilian litchi fruit extracts on colon cancer cells. The results indicated that litchi exocarp, mesocarp and endocarp fractions reduce the viability and clonogenic growth of HT29 cells. These effects were due to cell cycle arrest in the G2/M phase followed by caspase-dependent cell death. Interestingly, litchi exocarp and endocarp triggered a precocious autophagic response (16–24 h), which was accompanied by an increase in the level of autophagy related 1/autophagy activating kinase 1 (ATG1/ULK1), beclin-1, microtubule associated protein 1 light chain 3 (LC3)-II and p62 proteins. Autophagy inhibition by bafilomycin A1 or beclin-1 silencing increased cell death, thus suggesting that autophagy was initially triggered as a pro-survival response. Significant effects of Litchi extracts were also observed in other colon cancer cells, including HCT116 and Caco-2 cells. On the other hand, differentiated Caco-2 cells, a model of human enterocytes, appeared to be insensitive to the extracts at the same treatment conditions. High-Performance Liquid Chromatography–Electrospray Ionization-Quadrupole-Time-Of-Flight HPLC/ESI/Q-TOF evidenced the presence of some polyphenolic compounds, specifically in exocarp and endocarp extracts, that can account for the observed biological effects. The results obtained suggest a potential therapeutic efficacy of polyphenolic compounds purified from Sicilian Litchi fractions for the treatment of colon cancer. Moreover, our findings indicate that modulation of autophagy can represent a tool to improve the effectiveness of these agents and potentiate the anti-tumor response of colon cancer cells

    Sicilian Litchi Fruit Extracts Induce Autophagy versus Apoptosis Switch in Human Colon Cancer Cells

    No full text
    Litchi chinensis Sonnerat is a tropical tree whose fruits contain significant amounts of bioactive polyphenols. Litchi cultivation has recently spread in Sicily where the climate conditions are particularly favorable for this crop. Recent findings have shown that Litchi extracts display anti-tumor and pro-apoptotic effects in vitro, but the precise underlying mechanisms have not been fully elucidated. In this study, we report for the first time the effects of Sicilian litchi fruit extracts on colon cancer cells. The results indicated that litchi exocarp, mesocarp and endocarp fractions reduce the viability and clonogenic growth of HT29 cells. These effects were due to cell cycle arrest in the G2/M phase followed by caspase-dependent cell death. Interestingly, litchi exocarp and endocarp triggered a precocious autophagic response (16–24 h), which was accompanied by an increase in the level of autophagy related 1/autophagy activating kinase 1 (ATG1/ULK1), beclin-1, microtubule associated protein 1 light chain 3 (LC3)-II and p62 proteins. Autophagy inhibition by bafilomycin A1 or beclin-1 silencing increased cell death, thus suggesting that autophagy was initially triggered as a pro-survival response. Significant effects of Litchi extracts were also observed in other colon cancer cells, including HCT116 and Caco-2 cells. On the other hand, differentiated Caco-2 cells, a model of human enterocytes, appeared to be insensitive to the extracts at the same treatment conditions. High-Performance Liquid Chromatography–Electrospray Ionization-Quadrupole-Time-Of-Flight HPLC/ESI/Q-TOF evidenced the presence of some polyphenolic compounds, specifically in exocarp and endocarp extracts, that can account for the observed biological effects. The results obtained suggest a potential therapeutic efficacy of polyphenolic compounds purified from Sicilian Litchi fractions for the treatment of colon cancer. Moreover, our findings indicate that modulation of autophagy can represent a tool to improve the effectiveness of these agents and potentiate the anti-tumor response of colon cancer cells

    Ethanol-Mediated Stress Promotes Autophagic Survival and Aggressiveness of Colon Cancer Cells via Activation of Nrf2/HO-1 Pathway

    No full text
    Epidemiological studies suggest that chronic alcohol consumption is a lifestyle risk factor strongly associated with colorectal cancer development and progression. The aim of the present study was to examine the effect of ethanol (EtOH) on survival and progression of three different colon cancer cell lines (HCT116, HT29, and Caco-2). Our data showed that EtOH induces oxidative and endoplasmic reticulum (ER) stress, as demonstrated by reactive oxygen species (ROS) and ER stress markers Grp78, ATF6, PERK and, CHOP increase. Moreover, EtOH triggers an autophagic response which is accompanied by the upregulation of beclin, LC3-II, ATG7, and p62 proteins. The addition of the antioxidant N-acetylcysteine significantly prevents autophagy, suggesting that autophagy is triggered by oxidative stress as a prosurvival response. EtOH treatment also upregulates the antioxidant enzymes SOD, catalase, and heme oxygenase (HO-1) and promotes the nuclear translocation of both Nrf2 and HO-1. Interestingly, EtOH also upregulates the levels of matrix metalloproteases (MMP2 and MMP9) and VEGF. Nrf2 silencing or preventing HO-1 nuclear translocation by the protease inhibitor E64d abrogates the EtOH-induced increase in the antioxidant enzyme levels as well as the migration markers. Taken together, our results suggest that EtOH mediates both the activation of Nrf2 and HO-1 to sustain colon cancer cell survival, thus leading to the acquisition of a more aggressive phenotype

    The analysis of estrogen receptor-α positive breast cancer stem-like cells unveils a high expression of the serpin proteinase inhibitor PI-9: Possible regulatory mechanisms

    No full text
    Breast cancer stem cells seem to play important roles in breast tumor recurrence and endocrine therapy resistance, although the underlying mechanisms have not been well established. Moreover, in some tumor systems the immunosurveillance failure against cancer cells has been related to the presence of the granzyme B inhibitor PI-9. This study explored the status of PI-9 in tumorspheres isolated from estrogen receptor-α positive (ERα+) breast cancer MCF7 cells. Studies were performed in tertiary tumorspheres which possess high levels of stemness markers (Nanog, Oct3/4 and Sox2) and self-renewal ability. The exposure to estrogens (17-β estradiol and genistein) increased the number and sizes of tumorspheres, promoting cell proliferation as demonstrated by the increase in the proliferating cell nuclear antigen (PCNA). The study of the three isoforms (66, 46 and 36 kDa) of ERα disclosed that tertiary tumorspheres exhibit a marked increase in ERα36, while the level of ERα66, which is highly expressed in MCF7 cells, declines. Although it is known that PI-9 is a transcriptional target of ERα66, surprisingly in tertiary tumorspheres, despite the reduced level of ERα66, the protein and mRNA content of PI-9 is higher than in MCF7 cells. Treatment with estrogens further increased PI-9 level while decreased that of ERα66 isoform thus excluding the involvement of this receptor isoform in the event. Moreover, our studies also provided evidence that tertiary tumorspheres express elevated levels of CXCR4 and phospho-p38, suggesting that the high PI-9 content might be ascribed to the activation of the proliferative CXCR4/phospho-p38 axis. Taken together, these events could supply a selective advantage to breast cancer stem cells by interfering with immunosurveillance systems and open up the avenue to new possible targets for breast cancer treatment

    Assessing the cardiology community position on transradial intervention and the use of bivalirudin in patients with acute coronary syndrome undergoing invasive management: results of an EAPCI survey.

    Get PDF
    AIMS: Our aim was to report on a survey initiated by the European Association of Percutaneous Cardiovascular Interventions (EAPCI) collecting the opinion of the cardiology community on the invasive management of acute coronary syndrome (ACS), before and after the MATRIX trial presentation at the American College of Cardiology (ACC) 2015 Scientific Sessions. METHODS AND RESULTS: A web-based survey was distributed to all individuals registered on the EuroIntervention mailing list (n=15,200). A total of 572 and 763 physicians responded to the pre- and post-ACC survey, respectively. The radial approach emerged as the preferable access site for ACS patients undergoing invasive management with roughly every other responder interpreting the evidence for mortality benefit as definitive and calling for a guidelines upgrade to class I. The most frequently preferred anticoagulant in ACS patients remains unfractionated heparin (UFH), due to higher costs and greater perceived thrombotic risks associated with bivalirudin. However, more than a quarter of participants declared the use of bivalirudin would increase after MATRIX. CONCLUSIONS: The MATRIX trial reinforced the evidence for a causal association between bleeding and mortality and triggered consensus on the superiority of the radial versus femoral approach. The belief that bivalirudin mitigates bleeding risk is common, but UFH still remains the preferred anticoagulant based on lower costs and thrombotic risks
    corecore