11 research outputs found
Digenic Alport Syndrome
Digenic Alport syndrome refers to the inheritance of pathogenic variants in COL4A5 plus COL4A3 or COL4A4 or in COL4A3 plus COL4A4. Where digenic Alport syndrome includes a pathogenic COL4A5 variant, the consequences depend on the sex of the affected individual, COL4A5 variant ?severity,? and the nature of the COL4A3 or COL4A4 change. A man with a pathogenic COL4A5 variant has all his collagen IV ?3?4?5-heterotrimers affected, and an additional COL4A3 or COL4A4 variant may not worsen disease. A woman with a pathogenic COL4A5 variant has on average 50% of her heterotrimers affected, which is increased to 75% with a further COL4A3 or COL4A4 variant and associated with a higher risk of proteinuria. In digenic Alport syndrome with pathogenic COL4A3 and COL4A4 variants, 75% of the heterotrimers are affected. The COL4A3 and COL4A4 genes occur head-to-head on chromosome 2, and inheritance is autosomal dominant when both variants affect the same chromosome (in cis) or recessive when they affect different chromosomes (in trans). This form of digenic disease results in increased proteinuria and a median age of kidney failure intermediate between autosomal dominant and autosomal recessive Alport syndrome. Previous guidelines have suggested that all pathogenic or likely pathogenic digenic variants should be identified and reported. Affected family members should be identified, treated, and discouraged from kidney donation. Inheritance within a family is easier to predict if the two variants are considered independently and if COL4A3 and COL4A4 variants are known to be inherited on the same or different chromosomes
Genotype-phenotype correlations for COL4A3-COL4A5 variants resulting in Gly substitutions in Alport syndrome
Alport syndrome is the commonest inherited kidney disease and nearly half the pathogenic variants in the COL4A3-COL4A5 genes that cause Alport syndrome result in Gly substitutions. This study examined the molecular characteristics of Gly substitutions that determine the severity of clinical features. Pathogenic COL4A5 variants affecting Gly in the Leiden Open Variation Database in males with X-linked Alport syndrome were correlated with age at kidney failure (n = 157) and hearing loss diagnosis (n = 80). Heterozygous pathogenic COL4A3 and COL4A4 variants affecting Gly (n = 304) in autosomal dominant Alport syndrome were correlated with the risk of haematuria in the UK 100,000 Genomes Project. Gly substitutions were stratified by exon location (1 to 20 or 21 to carboxyl terminus), being adjacent to a non-collagenous region (interruption or terminus), and the degree of instability caused by the replacement residue. Pathogenic COL4A5 variants that resulted in a Gly substitution with a highly destabilising residue reduced the median age at kidney failure by 7 years (p = 0.002), and age at hearing loss diagnosis by 21 years (p = 0.004). Substitutions adjacent to a non-collagenous region delayed kidney failure by 19 years (p = 0.014). Heterozygous pathogenic COL4A3 and COL4A4 variants that resulted in a Gly substitution with a highly destabilising residue (Arg, Val, Glu, Asp, Trp) were associated with an increased risk of haematuria (p = 0.018), and those adjacent to a non-collagenous region were associated with a reduced risk (p = 0.046). Exon location had no effect. In addition, COL4A5 variants adjacent to non-collagenous regions were over-represented in the normal population in gnomAD (p < 0.001). The nature of the substitution and of nearby residues determine the risk of haematuria, early onset kidney failure and hearing loss for Gly substitutions in X-linked and autosomal dominant Alport syndrome
The 2019 and 2021 International Workshops on Alport Syndrome
In 1927 Arthur Cecil Alport, a South African physician, described a British family with an inherited form of kidney disease that affected males more severely than females and was sometimes associated with hearing loss. In 1961, the eponymous name Alport syndrome was adopted. In the late twentieth century three genes responsible for the disease were discovered: COL4A3, COL4A4, and COL4A5 encoding for the α3, α4, α5 polypeptide chains of type IV collagen, respectively. These chains assemble to form heterotrimers of type IV collagen in the glomerular basement membrane. Scientists, clinicians, patient representatives and their families, and pharma companies attended the 2019 International Workshop on Alport Syndrome, held in Siena, Italy, from October 22 to 26, and the 2021 online Workshop from November 30 to December 4. The main topics included: disease re-naming, acknowledging the need to identify an appropriate term able to reflect considerable clinical variability; a strategy for increasing the molecular diagnostic rate; genotype-phenotype correlation from monogenic to digenic forms; new therapeutics and new therapeutic approaches; and gene therapy using gene editing. The exceptional collaborative climate that was established in the magical medieval setting of Siena continued in the online workshop of 2021. Conditions were established for collaborations between leading experts in the sector, including patients and drug companies, with the aim of identifying a cure for Alport syndrome
SGLT2-Inhibition in patients with Alport syndrome
Introduction
Large-scale trials showed positive outcomes of sodium–glucose cotransporter-2 inhibitors (SGLT2i) in adults with chronic kidney disease (CKD). Whether the use of SGLT2i is safe and effective in patients with the common hereditary CKD Alport syndrome has not yet been investigated specifically in larger cohorts.
Methods
This observational, multi-center, international study (NCT02378805) assessed 112 patients with Alport syndrome after start of SGLT2i. The study’s primary endpoint was change of albuminuria in albumin/gram creatinine from start of therapy.
Results
Compared to randomized trials investigating the effect of SGLT2i in CKD, the adult patients in this study were younger (38±14 years) and had a better estimated glomerular filtration rate, eGFR, (63±35 ml/min/1.73m2; n=98). Maximum follow up was 32 months. Compared to baseline, at the first three follow-up visits (months 1 to 3, 4 to 8 and 9 to 15) after initiation of SGLT2i-therapy, a significant reduction of albuminuria in milligrams albumin/gram creatinine (>30%) was observed. Mean loss of eGFR was 9±12 ml/min/1.73 m2 almost one year after initiation of SGLT2i-therapy (n=35). At a total of 71 patient-years at risk, 0.24 adverse events per patient year on SGLT2i were reported.
Conclusion
This study indicates that, additive to RAS-inhibition, SGLT2i have the potential to reduce the amount of albuminuria in patients with Alport syndrome. Future studies are needed to investigate the long-term effects of SGLT2i on CKD progression in patients with Alport syndrome to assess whether the observed reduction in albuminuria translates to a delay in kidney failure
Reassuring pregnancy outcomes in women with mild COL4A3-5 related disease (Alport Syndrome) as the genetic type of disease can aid personalized counseling.
Individualized pre-pregnancy counseling and antenatal care for women with chronic kidney disease (CKD) require disease-specific data. Here, we investigated pregnancy outcomes and long-term kidney function in women with COL4A3-5 related disease (Alport Syndrome, (AS)) in a large multicenter cohort. The ALPART-network (mAternaL and fetal PregnAncy outcomes of women with AlpoRT syndrome), an international collaboration of 17 centers, retrospectively investigated COL4A3-5 related disease pregnancies after the 20th week. Outcomes were stratified per inheritance pattern (X-Linked AS (XLAS)), Autosomal Dominant AS (ADAS), or Autosomal Recessive AS (ARAS)). The influence of pregnancy on estimated glomerular filtration rate (eGFR)-slope was assessed in 192 pregnancies encompassing 116 women (121 with XLAS, 47 with ADAS, and 12 with ARAS). Median eGFR pre-pregnancy was over 90ml/min/1.73m. Neonatal outcomes were favorable: 100% live births, median gestational age 39.0 weeks and mean birth weight 3135 grams. Gestational hypertension occurred during 23% of pregnancies (reference: 'general' CKD G1-G2 pregnancies incidence is 4-20%) and preeclampsia in 20%. The mean eGFR declined after pregnancy but remained within normal range (over 90ml/min/1.73m). Pregnancy did not significantly affect eGFR-slope (pre-pregnancy β=-1.030, post-pregnancy β=-1.349). ARAS-pregnancies demonstrated less favorable outcomes (early preterm birth incidence 3/11 (27%)). ARAS was a significant independent predictor for lower birth weight and shorter duration of pregnancy, next to the classic predictors (pre-pregnancy kidney function, proteinuria, and chronic hypertension) though missing proteinuria values and the small ARAS-sample hindered analysis. This is the largest study to date on AS and pregnancy with reassuring results for mild AS, though inheritance patterns could be considered in counseling next to classic risk factors. Thus, our findings support personalized reproductive care and highlight the importance of investigating kidney disease-specific pregnancy outcomes
Correction: Consensus statement on standards and guidelines for the molecular diagnostics of Alport syndrome: refining the ACMG criteria(European Journal of Human Genetics, (2021), 29, 8, (1186-1197), 10.1038/s41431-021-00858-1)
Correction to: European Journal of Human Genetics (2021) 29:1186–1197 The following Acknowledgement was missing: This research has been supported not financially by “European Reference Network for Rare Kidney Disease, ERKNet”. This ERN is partly co-funded by the European Union within the framework of the Third Health Programme “ERN- 2016 – Framework Partnership Agreement 2017–2021”. The original article has been corrected
Guidelines for Genetic Testing and Management of Alport Syndrome
Genetic testing for pathogenic COL4A3–5 variants is usually undertaken to investigate the cause of persistent hematuria, especially with a family history of hematuria or kidney function impairment. Alport syndrome experts now advocate genetic testing for persistent hematuria, even when a heterozygous pathogenic COL4A3 or COL4A4 is suspected, and cascade testing of their first-degree family members because of their risk of impaired kidney function. The experts recommend too that COL4A3 or COL4A4 heterozygotes do not act as kidney donors. Testing for variants in the COL4A3–COL4A5 genes should also be performed for persistent proteinuria and steroid-resistant nephrotic syndrome due to suspected inherited FSGS and for familial IgA glomerulonephritis and kidney failure of unknown cause