9 research outputs found

    Small Angle X-Ray Scattering Studies of Mitochondrial Glutaminase C Reveal Extended Flexible Regions, and Link Oligomeric State with Enzyme Activity

    Get PDF
    Glutaminase C is a key metabolic enzyme, which is unregulated in many cancer systems and believed to play a central role in the Warburg effect, whereby cancer cells undergo changes to an altered metabolic profile. A long-standing hypothesis links enzymatic activity to the protein oligomeric state, hence the study of the solution behavior in general and the oligomer state in particular of glutaminase C is important for the understanding of the mechanism of protein activation and inhibition. In this report, this is extensively investigated in correlation to enzyme concentration or phosphate level, using a high-throughput microfluidic-mixing chip for the SAXS data collection, and we confirm that the oligomeric state correlates with activity. The in-depth solution behavior analysis further reveals the structural behavior of flexible regions of the protein in the dimeric, tetrameric and octameric state and investigates the C-terminal influence on the enzyme solution behavior. Our data enable SAXS-based rigid body modeling of the full-length tetramer states, thereby presenting the first ever experimentally derived structural model of mitochondrial glutaminase C including the N- and C-termini of the enzyme

    Lysine succinylation and SIRT5 couple nutritional status to glutamine catabolism.

    No full text
    The metabolic microenvironment of tumors is characterized by fluctuating and limited nutrient availability. To survive these conditions, cancer cell-intrinsic mechanisms sense and signal nutritional status. We describe how glutaminase (GLS) is destabilized by lysine succinylation and stabilized by the NAD+-dependent desuccinylase sirtuin 5 (SIRT5), coupling nutrient levels to metabolic flux

    Assembly and Function of the Chloroplast ATP Synthase

    No full text

    Identification of Novel, Evolutionarily Conserved Cdc42p-interacting Proteins and of Redundant Pathways Linking Cdc24p and Cdc42p to Actin Polarization in Yeast

    No full text
    corecore