4 research outputs found

    Understanding West Nile virus transmission: mathematical modelling to quantify the most critical parameters to predict infection dynamics

    Get PDF
    West Nile disease is a vector-borne disease caused by West Nile virus (WNV), involving mosquitoes as vectors and birds as maintenance hosts. Humans and other mammals can be infected via mosquito bites, developing symptoms ranging from mild fever to severe neurological infection. Due to the worldwide spread of WNV, human infection risk is high in several countries. Nevertheless, there are still several knowledge gaps regarding WNV dynamics. Several aspects of transmission taking place between birds and mosquitoes, such as the length of the infectious period in birds or mosquito biting rates, are still not fully understood, and precise quantitative estimates are still lacking for the European species involved. This lack of knowledge affects the precision of parameter values when modelling the infection, consequently resulting in a potential impairment of the reliability of model simulations and predictions and in a lack of the overall understanding of WNV spread. Further investigations are thus needed to better understand these aspects, but field studies, especially those involving several wild species, such as in the case of WNV, can be challenging. Thus, it becomes crucial to identify which transmission processes most influence the dynamics of WNV. In the present work, we propose a sensitivity analysis to investigate which of the selected epidemiological parameters of WNV have the largest impact on the spread of the infection. Based on a mathematical model simulating WNV spread into the Lombardy region (northern Italy), the basic reproduction number of the infection was estimated and used to quantify infection spread into mosquitoes and birds. Then, we quantified how variations in four epidemiological parameters representing the duration of the infectious period in birds, the mosquito biting rate on birds, and the competence and susceptibility to infection of different bird species might affect WNV transmission. Our study highlights that knowledge gaps in WNV epidemiology affect the precision in several parameters. Although all investigated parameters affected the spread of WNV and the modelling precision, the duration of the infectious period in birds and mosquito biting rate are the most impactful, pointing out the need of focusing future studies on a better estimate of these parameters at first. In addition, our study suggests that a WNV outbreak is very likely to occur in all areas with suitable temperatures, highlighting the wide area where WNV represents a serious risk for public healt

    Distribution of Phlebotomine Sand Flies (Diptera: Psychodidae) in the Lombardy Region, Northern Italy

    No full text
    This study investigated the species composition and density of sand flies in the Lombardy region (Northern Italy). Sand flies were collected using CDC traps baited with CO2 (CO2–CDC traps) between June and August 2021. A total of 670 sand flies were collected. The specimens were identified as seven species belonging to two genera, Phlebotomus and Sergentomyia, namely, S. minuta, Ph. perniciosus, Ph. perfiliewii, Ph. neglectus, Ph. mascitti, Ph. papatasi, and Ph. ariasi. Phlebotomus perniciosus was the most abundant species (87.76%), followed by Ph. perfiliewii (7.31%), Ph. neglectus (3.13%), S. minuta (0.75%), Ph. mascitti (0.6%), Ph. papatasi (0.3%), and Ph. ariasi, for which only one specimen was identified. Among these identified species, five are considered vectors of Leishmania, which causes cutaneous and visceral leishmaniasis. As vector presence increases the risk of vector-borne leishmaniasis, these results suggest that Northern Italy could be a potential area of pathogen circulation over the next few years. These preliminary results suggest that the risk of borne leishmaniasis is high in this region of Northern Italy. Monitoring the distribution of sand fly species in areas suitable for their persistence is important for control programs aimed at reducing the risk of leishmaniasis infection

    Epidemiological Features of the Highly Pathogenic Avian Influenza Virus H5N1 in a Densely Populated Area of Lombardy (Italy) during the Epidemic Season 2021–2022

    No full text
    In the last two years, there have been three major epidemic seasons in the territory of the European Union and the HPAI epizootic in 2021–2022 is the most severe in recent history. In Italy, the disease was introduced to dense poultry areas with serious economic consequences for the entire sector. In Lombardy, the analysis of the risk factors was carried out, also taking into account the density of domestic birds. In the most affected areas, 66.7% of the outbreaks occurred in the areas with the highest poultry density and the likelihood of an outbreak occurring increased with an increase in the density of birds per km2. In cells 10 × 10 km with a density greater than 10,000 birds/km2, the probability of outbreak occurrence was over 66.7%. The provinces involved in the last epidemic were the same involved in previous epidemics and, given the risk factors present in the area, it is plausible that the risk remains high also for future epidemic seasons. Therefore, to avoid the repetition of similar events, certain control measures shall be strengthened and vaccination considered as a complementary tool for the control of HPAI virus in risk areas

    Assessment of the Costs Related to West Nile Virus Monitoring in Lombardy Region (Italy) between 2014 and 2018

    No full text
    In Italy, the West Nile Virus surveillance plan considers a multidisciplinary approach to identify the presence of the virus in the environment (entomological, ornithological, and equine surveillance) and to determine the risk of infections through potentially infected donors (blood and organ donors). The costs associated with the surveillance program for the Lombardy Region between 2014 and 2018 were estimated. The costs of the program were compared with a scenario in which the program was not implemented, requiring individual blood donation nucleic acid amplification tests (NAT) to detect the presence of WNV in human samples throughout the seasonal period of vector presence. Considering the five-year period, the application of the environmental/veterinary surveillance program allowed a reduction in costs incurred in the Lombardy Region of 7.7 million EUR. An integrated surveillance system, including birds, mosquito vectors, and dead-end hosts such as horses and humans, can prevent viral transmission to the human population, as well as anticipate the detection of WNV using NAT in blood and organ donors. The surveillance program within a One Health context has given the possibility to both document the expansion of the endemic area of WNV in northern Italy and avoid most of the NAT-related costs
    corecore